
MSL-Network Documentation
Release 1.1.0.dev0

Measurement Standards Laboratory of New Zealand

Oct 09, 2023

CONTENTS

1 Contents 3

2 Index 79

Python Module Index 81

Index 83

i

ii

MSL-Network Documentation, Release 1.1.0.dev0

MSL-Network uses concurrency and asynchronous programming to transfer data across a network and
it is composed of three objects – a Network Manager, Clients and Services.

The Network Manager allows for multiple Clients and Services to connect to it and it links a Client's
request to the appropriate Service to execute the request and then the Network Manager sends the
response from the Service back to the Client.

The Network Manager uses concurrency to handle requests from multiple Clients such that multiple
requests start, run and complete in overlapping time periods and in no specific order. A Client can
send requests synchronously or asynchronously to the Network Manager for a Service to execute. See
Concurrency and Asynchronous Programming for more details.

JSON is used as the data format to exchange information between a Client and a Service. As such, it is
possible to implement a Client or a Service in any programming language to connect to the Network
Manager. See the JSON Formats section for an overview of the data format. One can also connect to the
Network Manager from a terminal to send requests, see Connecting from a Terminal for more details.

CONTENTS 1

https://www.json.org/

MSL-Network Documentation, Release 1.1.0.dev0

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Install MSL-Network

To install MSL-Network run:

pip install msl-network

Alternatively, using the MSL Package Manager run:

msl install network

1.1.1 Compatibility

The Client and Service classes can be implemented in any programming language (and also in un-
supported Python versions). See the JSON Formats section for how the Network Manager exchanges
information between a Client and a Service.

1.1.2 Dependencies

• Python 3.8+

• cryptography

• paramiko

Optional packages that can be used for (de)serializing JSON data:

• UltraJSON

• RapidJSON

• simplejson

• orjson

To use one of these external JSON packages, rather than Python’s builtin json module, read the docu-
mentation of msl.network.json.Package.

3

https://msl-package-manager.readthedocs.io/en/stable/
https://cryptography.io/en/stable/
https://www.paramiko.org/
https://www.json.org/
https://pypi.python.org/pypi/ujson/
https://pypi.python.org/pypi/python-rapidjson/
https://pypi.python.org/pypi/simplejson/
https://pypi.org/project/orjson/
https://www.json.org/
https://docs.python.org/3/library/json.html#module-json

MSL-Network Documentation, Release 1.1.0.dev0

1.2 Usage

Using MSL-Network requires a sequence of 3 steps:

1. Start the Network Manager

2. Start a Service on the Network Manager

3. Connect to the Network Manager as a Client

1.2.1 Start the Network Manager

The first thing to do is to start the Network Manager. There are 3 ways to do this.

1. From a terminal run:

msl-network start

Running this command will automatically perform the following default actions:

• create a private 2048-bit, RSA key

• create a self-signed certificate using the private key

• create an SQLite database to store information that is used by the Network
Manager

• start the Network Manager on the default port using the TLS protocol

• no authentication is required for Client's and Service's to connect to the
Manager

You can override the default actions, for example, use Elliptic-Curve Cryptography
rather than RSA or only allow certain users to be able to connect to the Manager. For
more details refer to the help that is available from the command line

msl-network --help
msl-network start --help

2. Call run_forever() in a script.

3. Call run_services() in a script. This method also starts the Service's immediately after the
Manager starts.

1.2.2 Start a Service on the Network Manager

In order to create a new Service just create a class that is a subclass of Service and call the start()
method.

4 Chapter 1. Contents

https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://www.sqlite.org/
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

MSL-Network Documentation, Release 1.1.0.dev0

BasicMath Service

For example, the BasicMath Service is a simple (and terribly inefficient) Service that performs some
basic math operations and it is included with MSL-Network.

To start the BasicMath Service on the Manager that is running on the same computer, run the following
command in a terminal

python -c "from msl.examples.network import BasicMath; BasicMath().start()"

Note: The reason for adding the time.sleep() functions in the BasicMath Service will become evident
when discussing Asynchronous Programming.

1.2.3 Connect to the Network Manager as a Client

Now that there is a BasicMath Service running on the Network Manager (which are both running on the
same computer that the Client will be), we can connect() to the Network Manager

>>> from msl.network import connect
>>> cxn = connect(name='MyClient')

establish a link with the BasicMath Service

>>> bm = cxn.link('BasicMath')

and send a request to the BasicMath Service

>>> bm.add(1, 2)
3

See the Asynchronous Programming section for an example on how to send requests asynchronously.

To find out what devices are currently connected to the Manager, execute

>>> print(cxn.identities(as_string=True))
Manager[localhost:1875]

attributes:
identity() -> dict
link(service: str) -> bool

language: Python 3.9.7
os: Windows 10 AMD64

Clients [1]:
MyClient[localhost:63818]
language: Python 3.9.7
os: Windows 10 AMD64

Services [1]:
BasicMath[localhost:63815]
attributes:

add(x: Union[int, float], y: Union[int, float]) -> Union[int, float]
divide(x: Union[int, float], y: Union[int, float]) -> Union[int, float]

(continues on next page)

1.2. Usage 5

https://docs.python.org/3/library/time.html#time.sleep

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

ensure_positive(x: Union[int, float]) -> bool
euler() -> 2.718281828459045
multiply(x: Union[int, float], y: Union[int, float]) -> Union[int,␣

→˓float]
pi() -> 3.141592653589793
power(x: Union[int, float], n=2) -> Union[int, float]
set_logging_level(level: Union[str, int]) -> bool
subtract(x: Union[int, float], y: Union[int, float]) -> Union[int,␣

→˓float]
language: Python 3.9.7
max_clients: -1
os: Windows 10 AMD64

If as_string=False, which is the default boolean value, then the returned value would be a dict,
rather than a str, containing the same information.

To disconnect from the Manager, execute

>>> cxn.disconnect()

If you only wanted to connect to the BasicMath Service (and no other Services on the Manager) then
you could create a LinkedClient

>>> from msl.network import LinkedClient
>>> bm = LinkedClient('BasicMath')
>>> bm.add(1, 2)
3
>>> bm.disconnect()

1.3 Concurrency and Asynchronous Programming

This section describes what is meant by Concurrency and Asynchronous Programming. The presenta-
tion by Robert Smallshire provides a nice overview of concurrent programming and Python’s asyncio
module.

6 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://youtu.be/M-UcUs7IMIM
https://youtu.be/M-UcUs7IMIM
https://docs.python.org/3/library/asyncio.html#module-asyncio

MSL-Network Documentation, Release 1.1.0.dev0

1.3.1 Concurrency

Concurrent programming uses a single thread to execute multiple tasks in an interleaved fashion. This is
different from parallel programming where multiple tasks can be executed at the same time.

The Network Manager uses concurrent programming. It runs in a single event loop but it can handle
multiple Clients and Services connected to it simultaneously.

When a Client sends a request, the Manager forwards the request to the appropriate Service and then
the Manager waits for another event to occur. Whether the event is a reply from a Service, another
request from a Client or a new device wanting to connect to the Manager, the Manager simply waits
for I/O events and forwards an event to the appropriate network device when an event becomes available.

Since the Manager is running in a single thread it can only process one event at a single instance in time.
In typical use cases, this does not inhibit the performance of the Manager since the Manager has the
sole responsibility of routing requests and replies through the network and it does not actually execute a
request. There are rare situations when an administrator is making a request for the Manager to execute
and in these situations the Manager would be executing the request, see admin_request() for more
details.

The Manager can become slow if it is (de)serializing a large JSON object or sending a large amount of
bytes through the network. For example, if a reply from a Service is 1 GB in size and the network speed
is 1 Gbps (125 MB/s) then it will take at least 8 seconds for the data to be transmitted. During these 8
seconds the Manager will be unresponsive to other events until it finishes sending all 1 GB of data.

If the request for, or reply from, a Service consumes a lot of the processing time of the Manager it is
best to start another instance of the Manager on another port to host the Service.

1.3.2 Asynchronous Programming

A Client can send requests either synchronously or asynchronously. Synchronous requests are sent
sequentially and the Client must wait to receive the reply before proceeding to send the next request.
These are blocking requests where the total execution time to receive all replies is the combined sum of
executing each request individually. Asynchronous requests do not wait for the reply but immediately
return a Future instance, which is an object that is a promise that a result (or exception) will be available
later. These are non-blocking requests where the total execution time to receive all replies is equal to the
time it takes to execute the longest-running request.

1.3. Concurrency and Asynchronous Programming 7

https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/concurrency_vs_parallelism.png
https://www.json.org/
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future

MSL-Network Documentation, Release 1.1.0.dev0

Synchronous Example

The following code illustrates how to send requests synchronously. Before you can run this example on
your own computer make sure to Start the Network Manager and start the BasicMath Service.

synchronous.py
#
This script takes about 21 seconds to run.

import time
from msl.network import connect

Connect to the Manager (that is running on the same computer)
cxn = connect()

Establish a link to the BasicMath Service
bm = cxn.link('BasicMath')

Get the start time before sending the requests
t0 = time.perf_counter()

Send all requests synchronously
The returned object is the result of each request
add = bm.add(1, 2)
subtract = bm.subtract(1, 2)
multiply = bm.multiply(1, 2)
divide = bm.divide(1, 2)
is_positive = bm.ensure_positive(1)
power = bm.power(2, 4)

Print the results
print(f'1+2= {add}')
print(f'1-2= {subtract}')

(continues on next page)

8 Chapter 1. Contents

https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/sync_vs_async.png

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

print(f'1*2= {multiply}')
print(f'1/2= {divide}')
print(f'is positive? {is_positive}')
print(f'2**4= {power}')

The total time that passed to receive all results
dt = time.perf_counter() - t0
print(f'Total execution time: {dt:.2f} seconds')

Disconnect from the Manager
cxn.disconnect()

The output of the synchronous.py program will be:

1+2= 3
1-2= -1
1*2= 2
1/2= 0.5
is positive? True
2**4= 16
Total execution time: 21.06 seconds

The Total execution time value will be slightly different for you, but the important thing to notice is that
executing all requests took about 21 seconds (i.e., 1+2+3+4+5+6=21 for the time.sleep() functions
in the BasicMath Service) and that the returned object from each request was the value of the result.

Asynchronous Example

The following code illustrates how to send requests asynchronously. Before you can run this example on
your own computer make sure to Start the Network Manager and start the BasicMath Service.

asynchronous.py
#
This script takes about 6 seconds to run.

import time
from msl.network import connect

Connect to the Manager (that is running on the same computer)
cxn = connect()

Establish a link to the BasicMath Service
bm = cxn.link('BasicMath')

Get the start time before sending the requests
t0 = time.perf_counter()

Create asynchronous requests by using the asynchronous=True keyword argument
The returned object is a Future object (not the result of each request)

(continues on next page)

1.3. Concurrency and Asynchronous Programming 9

https://docs.python.org/3/library/time.html#time.sleep

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

add = bm.add(1, 2, asynchronous=True)
subtract = bm.subtract(1, 2, asynchronous=True)
multiply = bm.multiply(1, 2, asynchronous=True)
divide = bm.divide(1, 2, asynchronous=True)
is_positive = bm.ensure_positive(1, asynchronous=True)
power = bm.power(2, 4, asynchronous=True)

There are different ways to gather the results of the Future objects.
Calling result() on the Future will block until the result becomes
available (or until the request raised an exception). Note, the
result() method also supports a timeout argument. You can also
register callbacks to be called when a Future is done.

Print the results
print(f'1+2= {add.result()}')
print(f'1-2= {subtract.result()}')
print(f'1*2= {multiply.result()}')
print(f'1/2= {divide.result()}')
print(f'is positive? {is_positive.result()}')
print(f'2**4= {power.result()}')

The total time that passed to receive all results
dt = time.perf_counter() - t0
print(f'Total execution time: {dt:.2f} seconds')

Disconnect from the Manager
cxn.disconnect()

The output of the asynchronous.py program will be:

1+2= 3
1-2= -1
1*2= 2
1/2= 0.5
is positive? True
2**4= 16
Total execution time: 6.02 seconds

The Total execution time value will be slightly different for you, but the important thing to notice is that
executing all requests took about 6 seconds (i.e., max(1, 2, 3, 4, 5, 6) for the time.sleep() functions
in the BasicMath Service) and that the returned object from each request was a Future instance which
we needed to get the result() of.

10 Chapter 1. Contents

https://docs.python.org/3/library/time.html#time.sleep
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.result

MSL-Network Documentation, Release 1.1.0.dev0

Synchronous vs Asynchronous comparison

Comparing the total execution time for the Synchronous Example and the Asynchronous Example we see
that the asynchronous program is 3.5 times faster. Choosing whether to send a request synchronously or
asynchronously is performed by passing in an asynchronous=False or asynchronous=True keyword
argument, respectively. Also, in the synchronous example when a request is sent the object that is returned
is the result of the method from the BasicMath Service, whereas in the asynchronous example the returned
value is a Future object that provides the result later.

Synchronous Asynchronous
Total execution time 21 seconds 6 seconds
Keyword argument to invoke asynchronous=False (default) asynchronous=True
Returned value from request the result a Future object

1.4 JSON Formats

Information is exchanged between a Manager, a Client and a Service using JSON as the data format.
The information is serialized to bytes and terminated with "\r\n" (a carriage return and a line feed).

A Client or a Service can be written in any programming language, but the JSON data format must
adhere to the specific requirements specified below. The Client and Service must also check for the
"\r\n" (or just the "\n") byte sequence in each network packet that it receives in order to ensure that
all bytes have been received or to check if multiple requests/responses are contained within the same
network packet.

1.4.1 Client Format

A Client must send a request with the following JSON representation:

{
"args": array of objects (arguments to be passed to the method of the␣

→˓Manager or Service)
"attribute": string (the name of a method or variable to access from the␣

→˓Manager or Service)
"error": false
"kwargs": name-value pairs (keyword arguments to be passed to the method of␣

→˓the Manager or Service)
"service": string (the name of the Service, or "Manager" if the request is␣

→˓for the Manager)
"uid": string (a unique identifier of the request)

}

The unique identifier (uid) is only used by the Client. The Manager simply forwards the unique iden-
tifier to the Service which just includes the unique identifier in its reply. Therefore, the value can be
anything that you want it to be (provided that it does not contain the "\r\n" sequence and it cannot
be equal to "notification" since this is a reserved identifier). The unique identifier is useful when
keeping track of which reply corresponds with which request when executing asynchronous requests.

1.4. JSON Formats 11

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://www.json.org/
https://en.wikipedia.org/wiki/Serialization
https://www.json.org/
https://www.json.org/

MSL-Network Documentation, Release 1.1.0.dev0

A Client will also have to send a reply to a Manager during the connection procedure (i.e., when
sending the identity of the Client and possibly providing a username and/or password if requested
by the Manager).

To send a reply to the Manager use the following JSON representation

{
"error": false (can be omitted)
"requester": string (can be omitted)
"result": object (the reply from the Client)
"uid": string (can be omitted)

}

You only need to include the “result” name-value pair in the reply. The “error”, “requester” and “uid”
name-value pairs can be omitted, or anything you want, since they are not used by the Manager to process
the reply from a Client. However, including these additional name-value pairs provides symmetry with
the way a Service sends a reply to a Manager when there is no error.

A Client will receive a reply that is in 1 of 3 JSON representations.

Before a Client successfully connects to the Manager the Manager will request information about the
connecting device (such as the identity of the device and it may check the authorization details of the
connecting device).

If the bytes received represent a request from the Network Manager then the JSON object will be:

{
"args": array of objects (arguments to be passed to the method of the␣

→˓Client)
"attribute": string (the name of a method to call from the Client)
"error": false
"kwargs": name-value pairs (keyword arguments to be passed to the method of␣

→˓the Client)
"requester": string (the address of the Network Manager)
"uid": string (an empty string)

}

If the bytes received represent a reply from a Service then the JSON object will be:

{
"error": false
"requester": string (the address of the Client that made the request)
"result": object (the reply from the Service)
"uid": string (the unique identifier of the request)

}

If the bytes received represent an error then the JSON object will be:

{
"error": true
"message": string (a short description of the error)
"requester": string (the address of the device that made the request)
"result": null

(continues on next page)

12 Chapter 1. Contents

https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

"traceback": array of strings (a detailed stack trace of the error)
"uid": string

}

A Service can also emit a notification to all Client's that are Linked with the Service. Each Client
will receive a notification that has the following JSON representation

{
"error": false
"result": array (a 2-element list of [args, kwargs], e.g., [[1, 2, 3], {"x

→˓": 4, "y": 5}])
"service": string (the name of the Service that emitted the notification)
"uid": "notification"

}

1.4.2 Service Format

A Service will receive data in 1 of 2 JSON representations.

If the bytes received represent an error from the Network Manager then the JSON object will be:

{
"error": true
"message": string (a short description of the error)
"requester": string (the address of the Manager)
"result": null
"traceback": array of strings (a detailed stack trace of the error)
"uid": string (an empty string)

}

If the bytes received represent a request from the Manager or a Client then the JSON object will be:

{
"args": array of objects (arguments to be passed to the method of the␣

→˓Service)
"attribute": string (the name of a method or variable to access from the␣

→˓Service)
"error": false
"kwargs": name-value pairs (keyword arguments to be passed to the method of␣

→˓the Service)
"requester": string (the address of the device that made the request)
"uid": string (the unique identifier of the request)

}

A Service will send a response in 1 of 2 JSON representations.

If the Service raised an exception then the JSON object will be:

{
"error": true

(continues on next page)

1.4. JSON Formats 13

https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

"message": string (a short description of the error)
"requester": string (the address of the device that made the request)
"result": null
"traceback": array of strings (a detailed stack trace of the error)
"uid": string (the unique identifier of the request)

}

If the Service successfully executed the request then the JSON object will be:

{
"error": false
"requester": string (the address of the device that made the request)
"result": object (the reply from the Service)
"uid": string (the unique identifier of the request)

}

A Service can also emit a notification to all Client's that are Linked with the Service. A Service
must emit a notification that has the following JSON representation

{
"error": false
"result": array (a 2-element list of [args, kwargs], e.g., [[1, 2, 3], {"x

→˓": 4, "y": 5}])
"service": string (the name of the Service that emitted the notification)
"uid": "notification"

}

1.5 Connecting from a Terminal

One can connect to the Network Manager from a terminal, e.g., using openssl s_client, to manually send
requests to the Network Manager. So that you do not have to enter a request in the very-specific JSON
representation of the Client Format, the following syntax can be used instead.

Connecting from a terminal is only convenient when connecting as a Client. A Service must enter
the full JSON representation of the Service Format when it sends a response.

Some tips for connecting as a Client:

• To identify as a Client enter

client

• To identify as a Client with the name My Name enter

client My Name

• To request something from the Network Manager use the following format

Manager <attribute> [<arguments>, [<keyword_arguments>]]

For example, to request the identity of the Network Manager enter

14 Chapter 1. Contents

https://www.json.org/
https://www.json.org/
https://www.openssl.org/docs/manmaster/man1/s_client.html
https://www.json.org/
https://www.json.org/

MSL-Network Documentation, Release 1.1.0.dev0

Manager identity

or, as a shortcut for requesting the identity of the Manager, you only need to enter

identity

To check if a user with the name n.bohr exists in the database of registered users enter

Manager users_table.is_user_registered n.bohr

Note: Most requests that are for the Network Manager to execute require that the
request comes from a Client that is connected to the Network Manager as an ad-
ministrator. Your login credentials will be checked (requested from you) before the
Network Manager executes the request. See the user command in MSL-Network CLI
Documentation for more details on how to become an administrator.

• To request something from a Service use the following format

<service> <attribute> [<arguments>, [<keyword_arguments>]]

Attention: Although you can send requests to a Service in the following manner
there is no way to block the request if the Service has already met the restriction
for the maximum number of Client's that can be linked with the Service to send
requests to it. Therefore, you should only do the following if you are certain that
the Service has not reached its maximum Client limit. To test if this Client
limit has been reached enter link <service>, for example, link BasicMath
and see if you get a PermissionError in the response before you proceed to send
requests to the Service.

For example, to request the addition of two numbers from the BasicMath Service enter

BasicMath add 4 10

or

BasicMath add x=4 y=10

To request the concatenation of two strings from a ModifyString.concat(s1, s2)
Service, but with the ModifyString Service being named String Editor on the Net-
work Manager enter

"String Editor" concat s1="first string" s2="second string"

• To disconnect from the Network Manager enter

disconnect

or

1.5. Connecting from a Terminal 15

MSL-Network Documentation, Release 1.1.0.dev0

exit

1.6 Python Examples

The following examples illustrate some ideas on how one could use MSL-Network.

1. Digital Multimeter

2. Additional (Runnable) Examples

3. RPi-SmartGadget – Uses a Raspberry Pi to communicate with a Sensirion SHTxx sensor.

1.6.1 Digital Multimeter

This example shows how a digital multimeter that has a non-Ethernet interface, e.g., GPIB or RS232,
can be controlled from any computer that is on the network. It uses the MSL-Equipment package to
connect to the digital multimeter and MSL-Network to enable the digital multimeter as a Service on
the network. This example is included with MSL-Network when it is installed, but since it requires
additional hardware (a digital multimeter) it can only be run if the hardware is attached to the computer.

The first task to do is to Start the Network Manager on the same computer that the digital multimeter is
physically connected to (via a GPIB cable or a DB9 cable). Next, on the same computer, copy and paste
the following script to a file, edit the equipment record used by MSL-Equipment for the information rele-
vant to your DMM (e.g., the COM#, GPIB address) and then run the script to start the digital multimeter
Service.

"""
Example showing how a digital multimeter that has a non-Ethernet interface
(e.g., GPIB or RS232) can be controlled from any computer that is on the␣
→˓network.
"""
from msl.equipment import ConnectionRecord
from msl.equipment import EquipmentRecord

from msl.network import Service

class DigitalMultimeter(Service):

def __init__(self):
"""Initialize the communication with the digital multimeter.

This script must be run on a computer that the multimeter is
physically connected to.
"""

Initialize the Service. Set the name of the DigitalMultimeter␣
→˓Service,

as it will appear on the Network Manager, to be 'Hewlett Packard␣
→˓34401A'

(continues on next page)

16 Chapter 1. Contents

https://github.com/MSLNZ/rpi-smartgadget
https://msl-equipment.readthedocs.io/en/latest/
https://msl-equipment.readthedocs.io/en/latest/

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

and specify that only 1 Client on the network can control the␣
→˓digital

multimeter at any instance in time. Once the Client disconnects from
the Network Manager another Client would then be able to link with␣

→˓the
DigitalMultimeter Service to control the digital multimeter.
super().__init__(name='Hewlett Packard 34401A', max_clients=1)

Connect to the digital multimeter
(see MSL-Equipment for more details)
record = EquipmentRecord(

manufacturer='HP',
model='34401A',
connection=ConnectionRecord(

address='COM4', # RS232 interface
backend='MSL',

)
)
self._dmm = record.connect()

def write(self, command: str) -> None:
"""Write a command to the digital multimeter.

Parameters

command : str

The command to write.
"""
self._dmm.write(command)

def read(self) -> str:
"""Read the response from the digital multimeter.

Returns

str

The response.
"""
return self._dmm.read().rstrip()

def query(self, command: str) -> str:
"""Query the digital multimeter.

Performs a write then a read.

Parameters

command : str

The command to write.

(continues on next page)

1.6. Python Examples 17

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

Returns

str

The response.
"""
return self._dmm.query(command).rstrip()

if __name__ == '__main__':
Initialize and start the DigitalMultimeter Service
dmm_service = DigitalMultimeter()
dmm_service.start()

With the DigitalMultimeter Service running you can execute the following commands on another
computer that is on the same network as the Manager in order to interact with the digital multimeter
from the remote computer.

Connect to the Manager by specifying the hostname (or IP address) of the computer that the Manager
is running on

>>> from msl.network import connect
>>> cxn = connect(host='the hostname or IP address of the computer that the␣
→˓Manager is running on')

Since the name of the DigitalMultimeter Service was specified to be 'Hewlett Packard
34401A', we must link with the correct name of the Service

>>> dmm = cxn.link('Hewlett Packard 34401A')

Tip: The process of establishing a connection to a Manager and linking with a Service can also be
done in a single line. A LinkedClient exists for this purpose. This can be useful if you only want to
link with a single Service.

>>> from msl.network import LinkedClient
>>> dmm = LinkedClient('Hewlett Packard 34401A', host='hostname or IP address␣
→˓of the Manager')

Now we can send write, read or query commands to the digital multimeter

>>> dmm.query('MEASURE:VOLTAGE:DC?')
'-6.23954727E-02'

When you are finished sending requests to the Manager you should disconnect from the Manager. This
will allow other Client's to be able to control the digital multimeter.

>>> cxn.disconnect()

18 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

1.6.2 Additional (Runnable) Examples

The following Service's are included with MSL-Network. To start any of these Service's, first make
sure that you Start the Network Manager, and then run the following command in a terminal. For this
example, the Echo Service is running

python -c "from msl.examples.network import Echo; Echo().start()"

You can then send requests to the Echo Service

>>> from msl.network import connect
>>> cxn = connect()
>>> e = cxn.link('Echo')
>>> e.echo('hello')
[['hello'], {}]
>>> e.echo('world!', x=7, array=list(range(10)))
[['world!'], {'x': 7, 'array': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}]
>>> cxn.disconnect()

Echo Service

"""
Example echo Service.

Before running this module ensure that the Network Manager is running on the
same computer, i.e., run the following command in a terminal

msl-network start

then run this module to connect to the Manager as a Service.

After the Echo Service starts you can connect to the Manager as a Client,
link with the Echo Service and then send requests, e.g.,

from msl.network import connect
cxn = connect()
e = cxn.link('Echo')
args, kwargs = e.echo(1, 2, x='hello', y='world')
"""
from msl.network import Service

class Echo(Service):

@staticmethod
def echo(*args, **kwargs):

return args, kwargs

if __name__ == '__main__':
(continues on next page)

1.6. Python Examples 19

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

service = Echo()
service.start()

BasicMath Service

"""
Example Service for illustrating the difference between synchronous and
asynchronous requests.

Before running this module ensure that the Network Manager is running on the
same computer, i.e., run the following command in a terminal

msl-network start

then run this module to connect to the Manager as a Service.

After the BasicMath Service starts you can connect to the Manager as a Client,
link with the BasicMath Service and then send requests, e.g.,

from msl.network import connect
cxn = connect()
bm = cxn.link('BasicMath')
value = bm.add(1, 2)
"""
import time
from typing import Union

from msl.network import Service

number = Union[int, float]

class BasicMath(Service):

euler = 2.718281828459045

@property
def pi(self) -> float:

return 3.141592653589793

def add(self, x: number, y: number) -> number:
time.sleep(1)
return x + y

def subtract(self, x: number, y: number) -> number:
time.sleep(2)
return x - y

(continues on next page)

20 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

def multiply(self, x: number, y: number) -> number:
time.sleep(3)
return x * y

def divide(self, x: number, y: number) -> number:
time.sleep(4)
return x / float(y)

def ensure_positive(self, x: number) -> bool:
time.sleep(5)
if x < 0:

raise ValueError('The value is < 0')
return True

def power(self, x: number, n=2) -> number:
time.sleep(6)
return x ** n

if __name__ == '__main__':
import logging

Optional: allows for "info" log messages to be visible on the Service
logging.basicConfig(

level=logging.INFO,
format='%(asctime)s [%(levelname)-5s] %(message)s',

)

service = BasicMath()
service.start()

MyArray Service

"""
Example Service for generating and manipulating arrays. This example
illustrates how to interface a LabVIEW program with MSL-Network.

Before running this module ensure that the Network Manager is running on the
same computer, i.e., run the following command in a terminal

msl-network start

then run this module to connect to the Manager as a Service.

After the MyArray Service starts you can connect to the Manager as a Client,
link with the MyArray Service and then send requests, e.g.,

from msl.network import connect
(continues on next page)

1.6. Python Examples 21

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

cxn = connect()
my_array = cxn.link('MyArray')
linspace = my_array.linspace(0, 1)
"""
from typing import List, Union

from msl.network import Service

number = Union[int, float]
Vector = List[float]

class MyArray(Service):

@staticmethod
def linspace(start: number, stop: number, n=100) -> List[float]:

"""Return evenly-spaced numbers over a specified interval."""
dx = (stop-start)/float(n-1)
return [start+i*dx for i in range(int(n))]

@staticmethod
def scalar_multiply(scalar: number, data: Vector) -> Vector:

"""Multiply every element in `data` by a number."""
return [element*scalar for element in data]

if __name__ == '__main__':
service = MyArray()
service.start()

Heartbeat Service

"""
Example Service that emits notifications to all linked Clients. This example
also shows how to add a task to the event loop of the Service.

Before running this module ensure that the Network Manager is running on the
same computer, i.e., run the following command in a terminal

msl-network start

then run this module to connect to the Manager as a Service.

After the Heartbeat Service starts you can connect to the Manager as a Client,
link with the Heartbeat Service, handle notifications from the Service and␣
→˓also
send requests, e.g.,

(continues on next page)

22 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

import types
from msl.network import connect

def print_notification(self, *args, **kwargs):
print(f'The {self.service_name} Service emitted', args, kwargs)

cxn = connect()
heartbeat = cxn.link('Heartbeat')
heartbeat.notification_handler = types.MethodType(print_notification,␣
→˓heartbeat)

some time later

heartbeat.reset()
"""
import asyncio

from msl.network import Service

class Heartbeat(Service):

def __init__(self):
"""A Service that emits a counter value."""
super(Heartbeat, self).__init__()
self._sleep = 1.0
self._counter = 0
self._alive = True

def kill(self) -> None:
"""Stop emitting the heartbeat."""
self._alive = False

def reset(self) -> None:
"""Reset the heartbeat counter."""
self._counter = 0

def set_heart_rate(self, beats_per_second: int) -> None:
"""Change the rate that the value of the counter is emitted."""
self._sleep = 1.0 / float(beats_per_second)

def shutdown_handler(self) -> None:
"""Called when the connection to the Manager is closed."""
self._alive = False

async def emit(self) -> None:
"""This coroutine is also run in the event loop."""
while self._alive:

self.emit_notification(self._counter)

(continues on next page)

1.6. Python Examples 23

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

self._counter += 1
await asyncio.sleep(self._sleep)

if __name__ == '__main__':
Initialize the Service
service = Heartbeat()

Add a task to the event loop of the Service
service.add_tasks(service.emit())

Start the Service
service.start()

1.7 Non-Python Examples

Since information is sent using the JSON format across the network the Client and Service classes
can be implemented in any programming language.

1.7.1 LabVIEW

The following illustrates how to use LabVIEW to send requests as a Client and receive requests as a
Service. The source code is available to download from the repository. The VI’s have been saved with
LabVIEW 2010. The LabVIEW code uses the i3 JSON Toolkit, which is bundled with the code in the
repository, to (de)serialize JSON data.

Attention: The asynchronous aspect of MSL-Network is not implemented in the VI’s.

The first step is to Start the Network Manager. Since LabVIEW does not natively support the TLS pro-
tocol you must start the Network Manager with the --disable-tls flag, and, to simplify the examples
below, do not use any authentication, i.e., run

msl-network start --disable-tls

The hostname and port number that the Network Manager is running on will be displayed. These values
will need to be entered in the front panel of the VI’s shown below.

... [INFO] msl.network - Network Manager running on <hostname>:<port> (TLS␣
→˓DISABLED)

24 Chapter 1. Contents

https://github.com/MSLNZ/msl-network/tree/main/external/labview
https://forums.ni.com/t5/JSON-Toolkit-for-LabVIEW/gp-p/8520
https://github.com/MSLNZ/msl-network/tree/main/external/labview
https://www.json.org/
https://en.wikipedia.org/wiki/Transport_Layer_Security

MSL-Network Documentation, Release 1.1.0.dev0

Client

The following shows how to send a request to the MyArray Service. Before running MyArray_client.
vi make sure that the MyArray Service is running on the Network Manager

python -c "from msl.examples.network import MyArray; MyArray().start(disable_
→˓tls=True)"

On the front panel of MyArray_client.vi you need to enter the hostname and port values that the Net-
work Manager is running on (see above). The Service name and function name values on the front panel
do not need to be changed for this example. By changing the values of the start, stop and n parameters
the result array will be populated when you run the VI.

1.7. Non-Python Examples 25

https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_client_fp.png

MSL-Network Documentation, Release 1.1.0.dev0

Service

The service_template.vi file is a template to use for creating a new Service. The controls on the
front panel of the VI are as follows:

• Network Manager IP Address or Hostname and Network Manager port: The hostname and port
values that the Network Manager is running on (see above).

• timeout ms: The maximum number of milliseconds to wait to connect to the Network Manager.

• username and password: Since the Network Manager can be started using different types of au-
thentication for a Client or Service to be allowed to connect to it you can specify the values here.
If the username and/or password values are not specified and the Network Manager requires these
values for the connection then LabVIEW will prompt you for these values.

• Service Name: The name of your Service as it will appear on the Network Manager.

• function name and function signature: These are used to let a Client know what functions your Ser-
vice provides, what input parameters are needed for each function and what each function returns.
For more details see the comments in the Service -> attributes section in the identity()
method.

26 Chapter 1. Contents

https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_client_bd.png

MSL-Network Documentation, Release 1.1.0.dev0

The case sequence on the block diagram needs to be updated for each function that your Service provides

1.7. Non-Python Examples 27

https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_service_template_fp.png
https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_service_template_bd.png

MSL-Network Documentation, Release 1.1.0.dev0

Adder Service

As a particular example of implementing a Service in LabVIEW the following VI shows an Adder Ser-
vice. This Service has a function called add_numbers that takes two numbers as inputs, x and y, and
returns the sum.

Note that the name of the add_numbers function is specified on the front panel (which lets Clients know
that this function exists) and in the case structure on the block diagram (which processes a Client’s re-
quest).

28 Chapter 1. Contents

https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_service_fp.png

MSL-Network Documentation, Release 1.1.0.dev0

Run Adder_service.vi to start the Adder Service and then on another computer you can send a request
to the Adder Service

>>> from msl.network import connect
>>> cxn = connect(host='the hostname or IP address of the Manager', disable_
→˓tls=True)

establish a link with the Adder Service

>>> adder = cxn.link('Adder')

and send a request to the Adder Service

>>> adder.add_numbers(x=1.2, y=3.4)
4.6

Disconnect from the Network Manager when you are finished

>>> cxn.disconnect()

1.8 Starting a Service from another computer

Suppose that you wanted to start a Service on a remote computer, for example, a Raspberry Pi, from
another computer that is on the same network as the Pi.

Your package has the following structure:

mypackage/
mypackage/

__init__.py
my_client.py
rpi_service.py

setup.py

with setup.py as

1.8. Starting a Service from another computer 29

https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_service_bd.png

MSL-Network Documentation, Release 1.1.0.dev0

from setuptools import setup

setup(
name='mypackage',
version='0.1.0',
packages=['mypackage'],
install_requires=['msl-network'],
entry_points={

'console_scripts': [
'mypackage = mypackage:start_service_on_rpi',

],
},

)

__init__.py as

from msl.network import run_services, ssh, LinkedClient

from .rpi_service import RPiService
from .my_client import MyClient

def connect(*, host='raspberrypi', rpi_password=None, timeout=10, **kwargs):
you will need to update the `console_script_path` value below
when you implement the code in your own program since this is a unique␣

→˓path
that is defined as the path where the mypackage executable is located␣

→˓on the Pi
console_script_path = '/home/pi/.local/bin/mypackage'
ssh.start_manager(host, console_script_path, ssh_username='pi',

ssh_password=rpi_password, timeout=timeout, **kwargs)

create a Client that is linked with a Service of your choice
in this case it is the RPiService
kwargs['host'] = host
return MyClient('RPiService', **kwargs)

def start_service_on_rpi():
this function gets called from your `console_scripts` definition in␣

→˓setup.py
kwargs = ssh.parse_console_script_kwargs()
if kwargs.get('auth_login', False) and ('username' not in kwargs or

→˓'password' not in kwargs):
raise ValueError(

'The Manager is using a login for authentication but RPiService '
'does not know the username and password to use to connect to the␣

→˓Manager'
)

run_services(RPiService(), **kwargs)

rpi_service.py as

30 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

from msl.network import Service

class RPiService(Service):

def __init__(self):
super(RPiService, self).__init__()

def shutdown_service(self, *args, **kwargs):
Implementing this method allows for the RPiService to be
shut down remotely by MyClient. MyClient can also include
*args and **kwargs to the shutdown_service() method.
If there is nothing that needs to be performed before the
RPiService shuts down then just return None.
After the shutdown_service() method returns, the RPiService
will automatically wait for all Futures that it is currently
executing to either finish or to be cancelled before the
RPiService disconnects from the Network Manager.
pass

def add_numbers(self, a, b, c, d):
return a + b + c + d

def power(self, a, n=2):
return a ** n

and my_client.py as

from msl.network import LinkedClient

class MyClient(LinkedClient):

def __init__(self, service_name, **kwargs):
super(MyClient, self).__init__(service_name, **kwargs)

def disconnect(self):
We override the `disconnect` method because we want to shut
down the RPiService and the Network Manager when MyClient
disconnects from the Raspberry Pi. Not every Service will
allow a Client to shut it down. However, we have decided to
design mypackage in a particular way that MyClient is
intended to be the only Client connected to the Manager and
when MyClient is done communicating with the RPiService then
both the Manager and the Service shut down. The Client can
also include *args and **kwargs in the shutdown_service()
request, but we don't use them in this example.
self.shutdown_service()
super(MyClient, self).disconnect()

def service_error_handler(self):
We can override this method to handle the situation if

(continues on next page)

1.8. Starting a Service from another computer 31

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

there is an error on the Service. In general, if a Service
raises an exception you wouldn't want it to shut
down because you would have to manually restart it. Especially
if other Clients are requesting information from that Service.
However, for mypackage we want everything to shut down
(RPiService, MyClient and the Manager) when any one of them
raises an exception.
self.disconnect()

To create a source distribution of mypackage run the following in the root folder of your package direc-
tory

python setup.py sdist

This will create a file dist/mypackage-0.1.0.tar.gz. Copy this file to the Raspberry Pi.

The following libraries are needed to install the cryptography package from source on the Raspberry Pi.

sudo apt install build-essential libssl-dev libffi-dev python3-dev

Note: It is recommended to install mypackage in a virtual environment if you are familiar with them.
However, in what follows we show how to install mypackage without using a virtual environment for
simplicity.

Install mypackage-0.1.0.tar.gz on the Raspberry Pi using

pip3 install mypackage-0.1.0.tar.gz

In addition, install mypackage-0.1.0.tar.gz on another computer.

Finally, on the ‘another’ computer you would perform the following. This would start the Network
Manager on the Raspberry Pi, start the RPiService, connect to the Manager and link() with
RPiService.

You may have to change the value of host for your Raspberry Pi. The following example assumes that
the hostname of the Raspberry Pi is raspberrypi.

>>> from mypackage import connect
>>> rpi = connect(host='raspberrypi')
>>> rpi.add_numbers(1, 2, 3, 4)
10
>>> rpi.power(4)
16
>>> rpi.power(5, n=3)
125

When you are done sending requests to RPiService you call the disconnect method which will shut
down the RPiService and the Network Manager that are running on the Raspberry Pi and disconnect
MyClient from the Pi.

32 Chapter 1. Contents

https://cryptography.io/en/latest/
https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html

MSL-Network Documentation, Release 1.1.0.dev0

>>> rpi.disconnect()

Tip: Suppose that you get the following error

>>> rpi = connect(host='raspberrypi')
...
[Errno 98] error while attempting to bind on address ('::', 1875, 0, 0):␣
→˓address already in use

This means that there is probably a Manager already running on the Raspberry Pi at port 1875. You have
four options to solve this problem using MSL-Network.

(1) Start another Manager on a different port

>>> rpi = connect(host='raspberrypi', port=1876)

(2) Connect to the Manager and shut it down gracefully; however, this requires that you are an admin-
istrator of that Manager. See the user command in MSL-Network CLI Documentation for more
details on how to create a user that is an administrator.

>>> from msl.network import connect, constants
>>> cxn = connect(host='raspberrypi')
>>> cxn.admin_request(constants.SHUTDOWN_MANAGER)

(3) Kill the Manager

>>> from msl.network import ssh
>>> ssh_client = ssh.connect('pi@raspberrypi')
>>> out = ssh.exec_command(ssh_client, 'ps aux | grep mypackage')
>>> print('\n'.join(out))
pi 1367 0.1 2.2 63164 21380 pts/0 Sl+ 12:21 0:01 /usr/bin/python3 .
→˓local/bin/mypackage
pi 4341 0.0 0.2 4588 2512 ? Ss 12:30 0:00 bash -c ps aux | grep␣
→˓mypackage
pi 4343 0.0 0.0 4368 540 ? S 12:30 0:00 grep mypackage
>>> ssh.exec_command(ssh_client, 'sudo kill -9 1367')
[]
>>> ssh_client.close()

(4) Reboot the remote computer

>>> from msl.network import ssh
>>> ssh_client = ssh.connect('pi@raspberrypi')
>>> ssh.exec_command(ssh_client, 'sudo reboot')
[]
>>> ssh_client.close()

1.8. Starting a Service from another computer 33

MSL-Network Documentation, Release 1.1.0.dev0

1.9 MSL-Network CLI Documentation

The follow commands summarize the various ways to use MSL-Network from a terminal.

1.9.1 msl.network.cli_certdump module

Command line interface for the certdump command.

To see the help documentation, run the following command in a terminal:

msl-network certdump --help

Dumps the details of a PEM certificate.

The certdump command is similar to the openssl command to get the details of a certificate:

openssl x509 -in certificate.crt -text -noout

Examples:

dump the details to the terminal
msl-network certdump /path/to/cert.pem

dump the details to a file
msl-network certdump /path/to/cert.pem --out dump.txt

See Also:

msl-network certgen

msl.network.cli_certdump.add_parser_certdump(parser)
Add the certdump command to the parser.

msl.network.cli_certdump.execute(args)
Executes the certdump command.

1.9.2 msl.network.cli_certgen module

Command line interface for the certgen command.

To see the help documentation, run the following command in a terminal:

msl-network certgen --help

Generate a self-signed PEM certificate.

The certificate uses the hostname of the computer that this command was executed on as the Common
Name and as the Issuer Name.

The certgen command is similar to the openssl command to generate a self-signed certificate from a
pre-existing private key:

34 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

openssl req -key private.key -new -x509 -days 365 --out certificate.crt

Examples:

create a default certificate using the default private key
and save it to the default directory
msl-network certgen

create a certificate using the specified key and
save the certificate to the specified file
msl-network certgen --key-file /path/to/key.pem /path/to/cert.pem

See Also:

msl-network keygen
msl-network certdump

msl.network.cli_certgen.add_parser_certgen(parser)
Add the certgen command to the parser.

msl.network.cli_certgen.execute(args)
Executes the certgen command.

1.9.3 msl.network.cli_delete module

Command line interface for the delete command.

New in version 1.0.

To see the help documentation, run the following command in a terminal:

msl-network delete --help

Delete files that are created by MSL-Network.

Can remove the database, log files, certificates and/or keys.

Examples:

delete all files that are created by MSL-Network
msl-network delete --all

delete all log files
msl-network delete --logs

msl.network.cli_delete.add_parser_delete(parser)
Add the delete command to the parser.

msl.network.cli_delete.execute(args)
Executes the delete command.

1.9. MSL-Network CLI Documentation 35

MSL-Network Documentation, Release 1.1.0.dev0

1.9.4 msl.network.cli_hostname module

Command line interface for the hostname command.

To see the help documentation, run the following command in a terminal:

msl-network hostname --help

Add/remove hostname(s) into/from the table in the database.

The Network Manager can be started with the option to use trusted devices (based on the hostname of the
connecting device) as the authorisation check for a Client or Service to be able to connect to the Network
Manager.

Each hostname in the table is considered as a trusted device and therefore the device can connect to the
Network Manager.

To use trusted hostnames as the authentication check, start the Network Manager with the
--auth-hostname flag:

msl-network start --auth-hostname

Examples:

add 'TheHostname' as a trusted device in the default database
msl-network hostname add TheHostname

add 'TheHostname' and 'OtherHostname' as trusted devices
msl-network hostname add TheHostname OtherHostname

remove 'OtherHostname' from the database of trusted devices
msl-network hostname remove OtherHostname

add 'TheHostname' to a specific database
msl-network hostname add TheHostname --database /path/to/database.db

list all trusted hostnames
msl-network hostname list

msl.network.cli_hostname.add_parser_hostname(parser)
Add the hostname command to the parser.

msl.network.cli_hostname.execute(args)
Executes the hostname command.

36 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

1.9.5 msl.network.cli_keygen module

Command line interface for the keygen command.

To see the help documentation, run the following command in a terminal:

msl-network keygen --help

Generate a private key to digitally sign a PEM certificate.

The keygen command is similar to the openssl command:

openssl req -newkey rsa:2048 -nodes -keyout key.pem

Examples:

create a default private key (RSA, 2048-bit, unencrypted)
and save it to the default directory
msl-network keygen

create a 3072-bit, encrypted private key using the DSA algorithm
msl-network keygen dsa --size 3072 --password WhatEVER you wAnt!

See Also:

msl-network certgen

msl.network.cli_keygen.add_parser_keygen(parser)
Add the keygen command to the parser.

msl.network.cli_keygen.execute(args)
Executes the keygen command.

1.9.6 msl.network.cli_start module

Command line interface for the start command.

To see the help documentation, run the following command in a terminal:

msl-network start --help

Start the MSL Network Manager.

Examples:

start the Network Manager using the default settings
msl-network start

start the Network Manager on port 8326
msl-network start --port 8326

require an authentication password for Clients and Services
to be able to connect to the Network Manager

(continues on next page)

1.9. MSL-Network CLI Documentation 37

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

msl-network start --auth-password abc 123

use a specific certificate and key for the secure TLS protocol
msl-network start --cert-file /path/to/cert.pem --key-file /path/to/key.pem

require that a valid username and password are specified for
Clients and Services to be able to connect to the Network Manager
msl-network start --auth-login

See Also:

msl-network certgen
msl-network keygen
msl-network hostname
msl-network user

msl.network.cli_start.add_parser_start(parser)
Add the start command to the parser.

msl.network.cli_start.execute(args)
Executes the start command.

1.9.7 msl.network.cli_user module

Command line interface for the user command.

To see the help documentation, run the following command in a terminal:

msl-network user --help

Add/remove a user into/from a database.

The Network Manager can be started with the option to use a user’s login credentials as the authorisation
check for a Client or Service to be able to connect to the Network Manager.

To use the login credentials as the authentication check, start the Network Manager with the
--auth-login flag:

msl-network start --auth-login

Examples:

add 'j.doe' to the default database
msl-network user add j.doe --password a good password

add 'a.smith' as an administrator to the database
msl-network user add a.smith --password !PaSsWoRd* --admin

update 'j.doe' to be an administrator
msl-network user update j.doe --admin

(continues on next page)

38 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

update 'a.smith' to not be an administrator
msl-network user update a.smith

update the password for 'j.doe' using a password in a file
msl-network user update j.doe --password /path/to/my/password.txt

remove 'j.doe' from the default database
msl-network user remove j.doe

add 'j.doe' to a specific database
msl-network user add j.doe --password The Password To Use --database /path/to/
→˓database.db

list all users in the database
msl-network user list

msl.network.cli_user.add_parser_user(parser)
Add the user command to the parser.

msl.network.cli_user.execute(args)
Executes the user command.

For example, run

msl-network start --help

from a terminal to print the help for the start command.

1.10 MSL-Network API Documentation

MSL-Network has very little functions or classes that need to be accessed in a user’s application.

Typically, only the Service class needs to be subclassed and the connect() function will be called to
connect to the Network Manager for most applications using MSL-Network.

The msl.network.ssh module provides some functions for using SSH to connect to a remote computer.
Starting a Service from another computer shows an example Python package that can automatically start
a Network Manager and a Service on a Raspberry Pi from another computer.

The process of establishing a connection to a Manager and linking with a particular Service can be
achieved by creating a LinkedClient. This can be useful if you only want to link with a single Service
on a Manager.

1.10. MSL-Network API Documentation 39

https://www.ssh.com/ssh/

MSL-Network Documentation, Release 1.1.0.dev0

1.10.1 Package Structure

msl.network package

Concurrent and asynchronous network I/O.

msl.network.version_info = (1, 1, 0, 'dev0')

Contains the version information as a (major, minor, micro, releaselevel) tuple.

Type
namedtuple

msl.network.client module

Use the connect() function to connect to a Network Manager as a Client.

msl.network.client.connect(*, name='Client', host='localhost', port=1875, timeout=10,
username=None, password=None, password_manager=None,
read_limit=None, disable_tls=False, cert_file=None,
assert_hostname=True, auto_save=False)

Create a new connection to a Network Manager as a Client.

Changed in version 0.4: Renamed certificate to certfile.

Changed in version 1.0: Renamed certfile to cert_file. Added the auto_save and read_limit key-
word arguments.

Parameters

• name (str, optional) – A name to assign to the Client to help identify it on
the network.

• host (str, optional) – The hostname (or IP address) of the Network Manager
that the Client should connect to.

• port (int, optional) – The port number of the Network Manager that the
Client should connect to.

• timeout (float, optional) – The maximum number of seconds to wait to
connect to the Network Manager.

• username (str, optional) – The username to use to connect to the Network
Manager. You need to specify a username to connect to a Manager only if the
Manager was started using the --auth-login flag. If a username is required,
and you have not specified a value then you will be asked for a username. See
cli_start for more details.

• password (str, optional) – The password that is associated with username.
If a password is required, and you have not specified a value then you will be
asked for the password.

• password_manager (str, optional) – The password that is associated with
the Network Manager. You need to specify the password only if the Net-
work Manager was started using the --auth-password flag. If a password
is required, and you have not specified a value then you will be asked for the
password.

40 Chapter 1. Contents

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

• read_limit (int, optional) – The buffer size limit when reading bytes from
a network stream. If None then there is no (practical) limit.

• disable_tls (bool, optional) – Whether to connect to the Network Manager
with or without using the secure TLS protocol.

• cert_file (str, optional) – The path to a certificate file to use for the secure
TLS connection with the Network Manager. Not used if disable_tls is True.

• assert_hostname (bool, optional) – Whether to check that the hostname of
the Network Manager matches the value of host. Not used if disable_tls is
True.

• auto_save (bool, optional) – Whether to automatically save the certificate
of the Network Manager if the certificate is not already saved. Not used if
disable_tls is True.

Returns
Client – A new connection to a Network Manager.

msl.network.client.filter_client_connect_kwargs(**kwargs)
From the specified keyword arguments only return those that are valid for connect().

New in version 0.4.

Parameters
kwargs – All keyword arguments that are not in the function signature of
connect() are silently ignored and are not included in the output.

Returns
dict – Valid keyword arguments that can be passed to connect().

class msl.network.client.Client(name)
Bases: Device

Base class for all Clients.

Attention: Do not instantiate directly. Use connect() to connect to a Network Manager.

admin_request(attrib, *args, **kwargs)
Send a request to the Network Manager as an administrator.

The user that calls this method must have administrative privileges for that Manager. See
cli_user for details on how to create a user that is an administrator .

Changed in version 0.3: Added a timeout option as one of the keyword arguments.

Parameters

• attrib (str) – The attribute of the Manager. Can contain dots . to access
sub-attributes.

• *args – The arguments to send to attrib of the Manager.

• **kwargs – The keyword arguments to send to attrib of the Manager. Also
accepts a timeout keyword argument as a float or int as the maximum
number of seconds to wait for the reply from the Network Manager. The
default timeout is None.

1.10. MSL-Network API Documentation 41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

MSL-Network Documentation, Release 1.1.0.dev0

Returns
The reply from the Network Manager.

Examples

>>> from msl.network import connect
>>> cxn = connect(**kwargs)
>>> cxn.admin_request('users_table.usernames')
['Alice', 'Bob', 'Charlie', 'Eve', 'admin']
>>> cxn.admin_request('users_table.is_user_registered', 'N.Bohr')
False

An admin can also shut down the Manager

>>> from msl.network.constants import SHUTDOWN_MANAGER
>>> cxn.admin_request(SHUTDOWN_MANAGER)

disconnect(timeout=None)
Disconnect from the Network Manager.

Changed in version 1.0: Added the timeout keyword argument.

Parameters
timeout (int or float, optional) – The maximum number of seconds to wait
for the reply from the Network Manager.

is_connected()

Whether the Client is currently connected to the Network Manager.

New in version 1.0.

Returns
bool – Whether the connection is active.

link(service, *, timeout=None)
Link with a Service on the Network Manager.

Changed in version 0.3: Added the timeout keyword argument.

Parameters

• service (str) – The name of the Service to link with.

• timeout (int or float, optional) – The maximum number of seconds to
wait for the reply from the Network Manager.

Returns
Link – A Link with the requested service.

identities(*, as_string=False, indent=2, timeout=None)
Returns the identities of all devices that are connected to the Network Manager.

Changed in version 0.3: Added the timeout keyword argument.

Changed in version 0.4: Renamed as_yaml to as_string.

Changed in version 1.0: Renamed this method from manager to identities.

42 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

MSL-Network Documentation, Release 1.1.0.dev0

Parameters

• as_string (bool, optional) – Whether to return the information from the
Network Manager as a human-readable string.

• indent (int, optional) – The amount of indentation added for each recursive
level. Only used if as_string is True.

• timeout (int or float, optional) – The maximum number of seconds to
wait for the reply from the Network Manager.

Returns
dict or str – The identities of all connected devices.

spawn(name='Client')
Returns a new connection to the Network Manager.

Parameters
name (str, optional) – The name to assign to the new Client.

Returns
Client – A new Client.

unlink(link, *, timeout=None)
Unlink from a Service on the Network Manager.

New in version 0.5.

Parameters

• link (Link) – The object that is linked with the Service.

• timeout (int or float, optional) – The maximum number of seconds to
wait for the reply from the Network Manager.

class msl.network.client.Link(client, service, identity)
Bases: object

A network link between a Client and a Service.

Attention: Not to be instantiated directly. A Client creates a Link via the Client.link()
method.

acquire_lock(shared=False, timeout=None)
Acquire a lock with the linked Service.

When a lock is acquired, no more Clients are allowed to link with the Service until all
locks have been released.

If service_max_clients returns a value of 1, then there is no need to acquire a lock since
only a single Client can link with the Service at a time.

New in version 1.0.

Parameters

• shared (bool, optional) – Whether the lock is exclusive or shared. An exclu-
sive lock can only be acquired if a single Client is linked with the Service.
A shared lock allows for multiple simultaneous links, however, once any of

1.10. MSL-Network API Documentation 43

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

MSL-Network Documentation, Release 1.1.0.dev0

the linked Clients requests a lock the lock is shared amongst the currently-
linked Clients and no new Clients can link with the Service until all
locks have been released.

• timeout (int or float, optional) – The maximum number of seconds to
wait for the reply from the Network Manager.

Returns
list of str – The names of the Clients that are linked with the Service
while the lock is active. For an exclusive lock, only a single link is allowed so
the list contains a single item that is the name of the Client that requested the
lock.

Raises
RuntimeError – If a lock cannot be acquired.

release_lock(timeout=None)
Release a lock with the linked Service.

New in version 1.0.

Parameters
timeout (int or float, optional) – The maximum number of seconds to wait
for the reply from the Network Manager.

Returns
list of str – The names of the Clients that still have a lock with the Service
after this lock has been released. An emtpy list means that there are no active
locks.

property service_address

The address of the Service that this object is linked with.

Type
str

property service_attributes

The attributes of the Service that this object is linked with.

Type
dict

property service_language

The programming language that the Service is running on.

Type
str

property service_max_clients

The maximum number of Clients that can be linked with the Service. A value ≤ 0 means
that there is no limit.

New in version 1.0.

Type
int

44 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

MSL-Network Documentation, Release 1.1.0.dev0

property service_name

The name of the Service that this object is linked with.

Type
str

property service_os

The operating system that the Service is running on.

Type
str

disconnect(timeout=None)
An alias for unlink().

New in version 0.5.

notification_handler(*args, **kwargs)
Handle a notification from the Service that emitted a notification.

Important: You must re-assign this method at the instance level in order to handle the
notification.

New in version 0.5.

Parameters

• args – The arguments that were emitted.

• kwargs – The keyword arguments that were emitted.

Examples

The following assumes that the Heartbeat Service is running on the same computer. Using
types.MethodType allows for the print_notification function to access the self attribute of
heartbeat.

>>> import types
>>> from msl.network import connect
>>> cxn = connect()
>>> heartbeat = cxn.link('Heartbeat')
>>> def print_notification(self, *args, **kwargs):
... print(f'The {self.service_name} Service emitted', args,␣
→˓kwargs)
...
>>> heartbeat.notification_handler = types.MethodType(print_
→˓notification, heartbeat)
The Heartbeat Service emitted (72,) {}
The Heartbeat Service emitted (73,) {}
The Heartbeat Service emitted (74,) {}
The Heartbeat Service emitted (75,) {}
The Heartbeat Service emitted (76,) {}
The Heartbeat Service emitted (77,) {}

(continues on next page)

1.10. MSL-Network API Documentation 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.MethodType

MSL-Network Documentation, Release 1.1.0.dev0

(continued from previous page)

>>> heartbeat.reset()
The Heartbeat Service emitted (0,) {}
The Heartbeat Service emitted (1,) {}
The Heartbeat Service emitted (2,) {}
The Heartbeat Service emitted (3,) {}
The Heartbeat Service emitted (4,) {}
The Heartbeat Service emitted (5,) {}
The Heartbeat Service emitted (6,) {}
>>> heartbeat.kill()
>>> cxn.disconnect()

See also:

emit_notification(), emit_notification_threadsafe()

shutdown_service(*args, **kwargs)
Send a request for the Service to shut down.

A Servicemust also implement a method called shutdown_service otherwise calling this
shutdown_service() method will raise an exception.

See Starting a Service from another computer for an example use case.

New in version 0.5.

Parameters

• args – The positional arguments that are passed to the shutdown_service
method of the Service that this object is linked with.

• kwargs – The keyword arguments that are passed to the
shutdown_service method of the Service that this object is linked
with. Also accepts a timeout keyword argument as a float or int as
the maximum number of seconds to wait for the reply from the Network
Manager. The default timeout is None.

Returns
Whatever the shutdown_service method of the Service returns.

unlink(timeout=None)
Unlink from the Service on the Network Manager.

New in version 0.5.

Parameters
timeout (int or float, optional) – The maximum number of seconds to wait
for the reply from the Network Manager.

class msl.network.client.LinkedClient(service_name, **kwargs)
Bases: object

Create a new Client that has a Link with the specified Service.

New in version 0.4.

Parameters

• service_name (str) – The name of the Service to link with.

46 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

• kwargs – Keyword arguments that are passed to connect().

acquire_lock(shared=False, timeout=None)
See Link.acquire_lock for more details.

admin_request(attrib, *args, **kwargs)
See Client.admin_request for more details.

disconnect(timeout=None)
See Client.disconnect for more details.

identity()

See identity for more details.

identities(*, as_string=False, indent=2, timeout=None)
See Client.identities for more details.

is_connected()

See Client.is_connected for more details.

notification_handler(*args, **kwargs)
See Link.notification_handler for more details.

service_error_handler()

This method is called immediately before an exception is raised if there was an error process-
ing a request on the Service that this object is linked with.

You can override this method to perform any necessary cleanup (e.g., closing file handles,
shutting down threads, disconnecting from devices, etc.) before a RuntimeError is raised.

The Service remains running. This is to clean up the Client instance.

shutdown_service(*args, **kwargs)
See Link.shutdown_service for more details.

spawn(name='LinkedClient')
Returns a new connection to the Network Manager that has a Link with the same Service.

Parameters
name (str, optional) – The name to assign to the new Client.

Returns
LinkedClient – A new Client that has a Link with the same Service.

unlink(timeout=None)
See Link.unlink for more details.

property address_manager

See address_manager for more details.

property client

The Client that is providing the Link .

New in version 0.5.

Type
Client

1.10. MSL-Network API Documentation 47

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

property link

The Link with the Service.

Type
Link

property name

See name for more details.

property port

See port for more details.

release_lock(timeout=None)
See Link.release_lock for more details.

property service_address

See Link.service_address for more details.

property service_attributes

See Link.service_attributes for more details.

property service_language

See Link.service_language for more details.

property service_max_clients

See Link.service_max_clients for more details.

property service_name

See Link.service_name for more details.

property service_os

See Link.service_os for more details.

msl.network.constants module

Constants that are used by the MSL-Network package.

msl.network.constants.PORT = 1875

The default port number to use for the Network Manager (the year that the BIPM was established).

Type
int

msl.network.constants.HOSTNAME = 'build-22161379-project-167229-msl-network'

The hostname of the computer.

Type
str

msl.network.constants.HOME_DIR = '/home/docs/.msl/network'

The default directory where all files are to be located.

Can be overwritten by specifying a MSL_NETWORK_HOME environment variable.

Type
str

48 Chapter 1. Contents

https://www.bipm.org/en/home
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

msl.network.constants.CERT_DIR = '/home/docs/.msl/network/certs'

The default directory to save PEM certificates.

Type
str

msl.network.constants.KEY_DIR = '/home/docs/.msl/network/keys'

The default directory to save private PEM keys.

Type
str

msl.network.constants.DATABASE = '/home/docs/.msl/network/manager.sqlite3'

The default database path.

Type
str

msl.network.constants.IS_WINDOWS = False

Whether the operating system is Windows.

Type
bool

msl.network.constants.IS_LINUX = True

Whether the operating system is Linux.

Type
bool

msl.network.constants.LOCALHOST_ALIASES =
{'1.0.ip6.arpa',
'1.0.0.127.in-addr.arpa', '127.0.0.1', '::1',
'build-22161379-project-167229-msl-network', 'localhost'}

Aliases for localhost.

Type
set of str

msl.network.cryptography module

Functions to create a self-signed certificate for the secure SSL/TLS protocol.

msl.network.cryptography.generate_key(*, path=None, algorithm='RSA', password=None,
size=2048, curve='SECP384R1')

Generate a new private key.

Parameters

• path (str, optional) – The path to save the private key to. If not specified then
save the private key in the default directory with the default filename.

• algorithm (str, optional) – The encryption algorithm to use to generate the
private key. Options are:

– RSA - Rivest, Shamir, and Adleman algorithm.

– DSA - Digital Signature Algorithm.

1.10. MSL-Network API Documentation 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

– ECC - Elliptic Curve Cryptography.

• password (str, optional) – The password to use to encrypt the key.

• size (int, optional) – The size (number of bits) of the key. Only used if
algorithm is RSA or DSA.

• curve (str, optional) – The name of the elliptic curve to use. Only used if
algorithm is ECC. See Elliptic Curves for example elliptic-curve names.

Returns
str – The path to the private key.

msl.network.cryptography.load_key(path, *, password=None)
Load a private key from a file.

Parameters

• path (str) – The path to a key file.

• password (str, optional) – The password to use to decrypt the private key.

Returns
RSAPrivateKey, DSAPrivateKey or EllipticCurvePrivateKey – The pri-
vate key.

msl.network.cryptography.generate_certificate(*, path=None, key_path=None,
key_password=None,
algorithm='SHA256', years_valid=None,
digest_size=None, name=None,
extensions=None)

Generate a self-signed certificate.

Changed in version 1.0: Added the digest_size, name and extensions keyword arguments.

Parameters

• path (str, optional) – The path to save the certificate to. If not specified then
save the certificate in the default directory with the default filename.

• key_path (str, optional) – The path to the private key which will be used
to digitally sign the certificate. If not specified then automatically generates a
new private key (overwriting the default private key if one already exists).

• key_password (str, optional) – The password to use to decrypt the private
key.

• algorithm (str or HashAlgorithm, optional) – The hash algorithm to use.
See Message digests (Hashing) for allowed hash algorithms.

• years_valid (int or float, optional) – The number of years that the certifi-
cate is valid for. If you want to specify that the certificate is valid for 3 months
then set years_valid to be 0.25. Default is 100 years for 64-bit platforms and
15 years for 32-bit platforms.

• digest_size (int, optional) – The digest size (if the hash algorithm requires
one).

• name (Name, optional) – The object to use for the subject_name() and the
issuer_name(). If not specified then a default name is used.

50 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://cryptography.io/en/stable/hazmat/primitives/asymmetric/ec/#elliptic-curves
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cryptography.io/en/stable/hazmat/primitives/asymmetric/rsa/#cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey
https://cryptography.io/en/stable/hazmat/primitives/asymmetric/dsa/#cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey
https://cryptography.io/en/stable/hazmat/primitives/asymmetric/ec/#cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Name
https://cryptography.io/en/stable/x509/reference/#cryptography.x509.CertificateBuilder.subject_name
https://cryptography.io/en/stable/x509/reference/#cryptography.x509.CertificateBuilder.issuer_name

MSL-Network Documentation, Release 1.1.0.dev0

• extensions (list of ExtensionType, optional) – The extensions to add to
the certificate.

Returns
str – The path to the self-signed certificate that was generated.

msl.network.cryptography.load_certificate(cert)
Load a PEM certificate.

Parameters
cert (str or bytes) – If str then the path to the certificate file. If bytes then
the raw certificate data.

Returns
Certificate – The PEM certificate.

Raises
TypeError – If cert is not of type str or bytes.

msl.network.cryptography.get_default_cert_path()

str: Returns the default certificate path.

msl.network.cryptography.get_default_key_path()

str: Returns the default key path.

msl.network.cryptography.get_fingerprint(cert, *, algorithm='SHA1', digest_size=None)
Get the fingerprint of a certificate.

Changed in version 1.0: Added the digest_size keyword argument and allow algorithm to be a
string.

Parameters

• cert (Certificate) – The PEM certificate.

• algorithm (str or HashAlgorithm, optional) – The hash algorithm to use.
See Message digests (Hashing) for allowed hash algorithms.

• digest_size (int, optional) – The digest size (if the hash algorithm requires
one).

Returns
str – The fingerprint as a colon-separated hex string.

msl.network.cryptography.get_metadata(cert)
Get the metadata of a certificate.

Parameters
cert (Certificate) – The certificate.

Returns
dict – The metadata of the certificate.

msl.network.cryptography.get_metadata_as_string(cert)
Returns the metadata of a certificate as a human-readable string.

Parameters
cert (Certificate) – The certificate.

1.10. MSL-Network API Documentation 51

https://docs.python.org/3/library/stdtypes.html#list
https://cryptography.io/en/stable/x509/reference/#cryptography.x509.ExtensionType
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Certificate
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Certificate
https://docs.python.org/3/library/stdtypes.html#str
https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm
https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Certificate
https://docs.python.org/3/library/stdtypes.html#dict
https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Certificate

MSL-Network Documentation, Release 1.1.0.dev0

Returns
str – The metadata of the certificate.

msl.network.cryptography.get_ssl_context(*, cert_file=None, host=None, port=None,
auto_save=False, **kwargs)

Get the SSL context.

Gets the context either from connecting to a remote server or from loading it from a file.

To get the context from a remote server you must specify both host and port.

Changed in version 0.4: Renamed certificate to certfile.

Changed in version 1.0: Renamed certfile to cert_file. Added the auto_save keyword argument
and **kwargs.

Parameters

• cert_file (str, optional) – The path to a certificate file to load. If specified
then host, port and auto_save are ignored.

• host (str, optional) – The hostname or IP address of the remote server to
connect to.

• port (int, optional) – The port number of the remote server to connect to.

• auto_save (bool, optional) – Whether to automatically save the certificate
from the server. Default is to ask before saving.

• **kwargs – All additional keyword arguments are passed to ssl.
get_server_certificate().

Returns

• str – The path to the certificate file that was loaded.

• ssl.SSLContext – The SSL context.

msl.network.database module

Databases that are used by the Network Manager.

class msl.network.database.Database(database, **kwargs)
Bases: object

Base class for connecting to a SQLite database.

Automatically creates the database if it does not already exist.

Parameters

• database (str) – The path to the database file, or ':memory:' to open a
connection to a database that resides in RAM instead of on disk.

• kwargs – Optional keyword arguments to pass to sqlite3.connect().

property path

The path to the database file.

Type
str

52 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/ssl.html#ssl.get_server_certificate
https://docs.python.org/3/library/ssl.html#ssl.get_server_certificate
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sqlite3.html#sqlite3.connect
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

property connection

The connection object.

Type
sqlite3.Connection

property cursor

The cursor object.

Type
sqlite3.Cursor

close()

Closes the connection to the database.

execute(sql, parameters=None)
Wrapper around sqlite3.Cursor.execute().

Parameters

• sql (str) – The SQL command to execute

• parameters (list, tuple or dict, optional) – Only required if the sql
command is parameterized.

tables()

list of str: A list of the names of each table that is in the database.

table_info(name)
Returns the information about each column in the specified table.

Parameters
name (str) – The name of the table to get the information of.

Returns

list of tuple – The list of the fields in the table. The indices of each tuple
correspond to:

• 0 - id number of the column

• 1 - the name of the column

• 2 - the datatype of the column

• 3 - whether a value in the column can be NULL (0 or 1)

• 4 - the default value for the column

• 5 - whether the column is used as a primary key (0 or 1)

column_names(table_name)
Returns the names of the columns in the specified table.

Parameters
table_name (str) – The name of the table.

Returns
list of str – A list of the names of each column in the table.

1.10. MSL-Network API Documentation 53

https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection
https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor
https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.execute
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

column_datatypes(table_name)
Returns the datatype of each column in the specified table.

Parameters
table_name (str) – The name of the table.

Returns
list of str – A list of the datatypes of each column in the table.

class msl.network.database.ConnectionsTable(*, database=None, as_datetime=False,
**kwargs)

Bases: Database

The database table for devices that have connected to the Network Manager.

Parameters

• database (str, optional) – The path to the database file, or ':memory:' to
open a connection to a database that resides in RAM instead of on disk. If
None then loads the default database.

• as_datetime (bool, optional) – Whether to fetch the timestamps from the
database as datetime.datetime objects. If False then the timestamps will
be of type str.

• kwargs – Optional keyword arguments to pass to sqlite3.connect().

NAME = 'connections'

The name of the table in the database.

Type
str

insert(peer, message)
Insert a message about what happened when a device connected.

Parameters

• peer (Peer) – The peer that connected to the Network Manager.

• message (str) – The message about what happened (e.g, the connection
was successful, or it failed).

connections(*, start=None, end=None)
Return the information of the devices that have connected to the Network Manager.

Changed in version 1.0: Use T as the separator between the date and time. Renamed times-
tamp1 to start. Renamed timestamp2 to end.

Parameters

• start (datetime.datetime or str, optional) – Include all records
that have a timestamp ≥ start. If a str then in the yyyy-mm-dd or
yyyy-mm-ddTHH:MM:SS format.

• end (datetime.datetime or str, optional) – Include all records that
have a timestamp ≤ end. If a str then in the yyyy-mm-dd or
yyyy-mm-ddTHH:MM:SS format.

54 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/sqlite3.html#sqlite3.connect
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

Returns
list of tuple – The connection records.

class msl.network.database.HostnamesTable(*, database=None, **kwargs)
Bases: Database

The database table for trusted hostname’s that are allowed to connect to the Network Manager.

Parameters

• database (str, optional) – The path to the database file, or ':memory:' to
open a connection to a database that resides in RAM instead of on disk. If
None then loads the default database.

• kwargs – Optional keyword arguments to pass to sqlite3.connect().

NAME = 'auth_hostnames'

The name of the table in the database.

Type
str

insert(hostname)
Insert a hostname.

If the hostname is already in the table then it does not insert it again.

Parameters
hostname (str) – The trusted hostname.

delete(hostname)
Delete a hostname.

Parameters
hostname (str) – A hostname in the table.

Raises
ValueError – If hostname is not in the table.

hostnames()

list of str: Returns all the trusted hostnames.

class msl.network.database.UsersTable(*, database=None, **kwargs)
Bases: Database

The database table for keeping information about a users login credentials for connecting to a
Network Manager.

Parameters

• database (str, optional) – The path to the database file, or ':memory:' to
open a connection to a database that resides in RAM instead of on disk. If
None then loads the default database.

• kwargs – Optional keyword arguments to pass to sqlite3.connect().

NAME = 'auth_users'

The name of the table in the database.

1.10. MSL-Network API Documentation 55

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sqlite3.html#sqlite3.connect
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/sqlite3.html#sqlite3.connect

MSL-Network Documentation, Release 1.1.0.dev0

Type
str

insert(username, password, is_admin)
Insert a new user.

The password is encrypted and stored in the database using PBKDF2

To update the values for a user use update().

Parameters

• username (str) – The name of the user.

• password (str) – The password of the user in plain-text format.

• is_admin (bool) – Does this user have admin rights?

Raises
ValueError – If the username is invalid or if password is empty.

update(username, *, password=None, is_admin=None)
Update either the salt used for the password and/or the admin rights.

Parameters

• username (str) – The name of the user.

• password (str, optional) – The password of the user in plain-text format.

• is_admin (bool, optional) – Does this user have admin rights?

Raises
ValueError – If username is not in the table. If both password and is_admin
are not specified. If password is an empty string.

delete(username)
Delete a user.

Parameters
username (str) – The name of the user.

Raises
ValueError – If username is not in the table.

get_user(username)
Get the information about a user.

Parameters
username (str) – The name of the user.

Returns
tuple – Returns (pid, username, key, salt, is_admin) for the specified user-
name.

records()

list of tuple: Returns [(pid, username, key, salt, is_admin), . . .] for all users.

usernames()

list of str: Returns the names of all registered users.

56 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://en.wikipedia.org/wiki/PBKDF2
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

users()

list of tuple: Returns [(username, is_admin), . . .] for all users.

is_user_registered(username)
bool: Whether username is a registered user.

is_password_valid(username, password)
Check whether the password matches the encrypted password in the database.

Parameters

• username (str) – The name of the user.

• password (str) – The password to check (in plain-text format).

Returns
bool – Whether password matches the password in the database for the user.

is_admin(username)
Check whether a user has admin rights.

Parameters
username (str) – The name of the user.

Returns
bool – Whether the user has admin rights.

msl.network.database.convert_datetime(value)
Convert a date and time to a datetime object.

Parameters
value (bytes) – The datetime value from an SQLite database.

Returns
datetime.datetime – The value as a datetime object.

msl.network.json module

This module is used as the JSON (de)serializer.

class msl.network.json.Package(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Bases: Enum

Supported Python packages for (de)serializing JSON objects.

By default, the builtin json module is used.

To change which JSON package to use you can call use() to set the backend during runtime, or you
can specify an MSL_NETWORK_JSON environment variable as the default backend. For example,
creating an environment variable named MSL_NETWORK_JSON and setting its value to be ULTRA
would use UltraJSON to (de)serialize JSON objects.

Changed in version 1.0: Moved from the msl.network.constantsmodule and renamed. Added
JSON, UJSON, RAPIDJSON and SIMPLEJSON aliases. Added OR (and alias ORJSON) for orjson.
Removed YAJL.

1.10. MSL-Network API Documentation 57

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://www.json.org/
https://docs.python.org/3/library/enum.html#enum.Enum
https://www.json.org/
https://docs.python.org/3/library/json.html#module-json
https://www.json.org/
https://pypi.python.org/pypi/ujson
https://www.json.org/
https://pypi.org/project/orjson/

MSL-Network Documentation, Release 1.1.0.dev0

BUILTIN = 'BUILTIN'

json

JSON = 'BUILTIN'

json

ULTRA = 'ULTRA'

UltraJSON

UJSON = 'ULTRA'

UltraJSON

RAPID = 'RAPID'

RapidJSON

RAPIDJSON = 'RAPID'

RapidJSON

SIMPLE = 'SIMPLE'

simplejson

SIMPLEJSON = 'SIMPLE'

simplejson

OR = 'OR'

orjson

ORJSON = 'OR'

orjson

msl.network.json.use(backend, *, loads_kwargs=None, dumps_kwargs=None)
Set which JSON backend to use.

New in version 1.0.

Changed in version 1.1: Added the loads_kwargs and dumps_kwargs keyword arguments.

Parameters

• backend (Package or str) – An enum value or member name (case-
insensitive).

• loads_kwargs (dict, optional) – Keyword arguments to use for the loads
function of the backend. If not specified, default options are used.

• dumps_kwargs (dict, optional) – Keyword arguments to use for the dumps
function of the backend. If not specified, default options are used.

58 Chapter 1. Contents

https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/json.html#module-json
https://pypi.python.org/pypi/ujson
https://pypi.python.org/pypi/ujson
https://pypi.python.org/pypi/python-rapidjson
https://pypi.python.org/pypi/python-rapidjson
https://pypi.python.org/pypi/simplejson
https://pypi.python.org/pypi/simplejson
https://pypi.org/project/orjson/
https://pypi.org/project/orjson/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

MSL-Network Documentation, Release 1.1.0.dev0

Examples

>>> from msl.network import json
>>> json.use(json.Package.UJSON)
>>> json.use('ujson')

msl.network.json.serialize(obj)
Serialize an object as a JSON-formatted string.

Parameters
obj – A JSON-serializable object.

Returns
str – The JSON-formatted string.

msl.network.json.deserialize(s)
Deserialize a JSON-formatted string to Python objects.

Parameters
s (str, bytes or bytearray) – A JSON-formatted string.

Returns
The deserialized Python object.

msl.network.manager module

The Network Manager.

class msl.network.manager.Manager(port, password, login, hostnames, connections_table,
users_table, hostnames_table, loop)

Bases: Network

The Network Manager.

Attention: Not to be instantiated directly. Start the Network Manager from the command
line. Run msl-network start --help from a terminal for more information.

async acquire_lock(writer, uid, service, shared)
A request from a Client to lock a Service.

New in version 1.0.

Parameters

• writer (asyncio.StreamWriter) – The stream writer of the Client.

• uid (str) – The unique identifier of the request.

• service (str) – The name of the Service that the Client wants to acquire
a lock with.

• shared (bool) – Whether the lock is exclusive or shared.

1.10. MSL-Network API Documentation 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

MSL-Network Documentation, Release 1.1.0.dev0

async new_connection(reader, writer)
Receive a new connection request.

To accept the new connection request, the following checks must be successful:

1. The correct authentication reply is received.

2. A correct identity is received, i.e., is the connection from a Client or Service?

Parameters

• reader (asyncio.StreamReader) – The stream reader.

• writer (asyncio.StreamWriter) – The stream writer.

async check_user(reader, writer)
Check the login credentials of a user.

Parameters

• reader (asyncio.StreamReader) – The stream reader.

• writer (asyncio.StreamWriter) – The stream writer.

Returns
bool – Whether the login credentials are valid.

async check_manager_password(reader, writer)
Check the Manager's password from the connected device.

Parameters

• reader (asyncio.StreamReader) – The stream reader.

• writer (asyncio.StreamWriter) – The stream writer.

Returns
bool – Whether the correct password was received.

async check_identity(reader, writer)
Check the identity of the connected device.

Parameters

• reader (asyncio.StreamReader) – The stream reader.

• writer (asyncio.StreamWriter) – The stream writer.

Returns
str or None – If the identity check was successful then returns the connection
type, either 'client' or 'service', otherwise returns None.

async get_handshake_data(reader)
Used by check_manager_password(), check_identity() and check_user().

Parameters
reader (asyncio.StreamReader) – The stream reader.

Returns
None, str or dict – The data.

60 Chapter 1. Contents

https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

MSL-Network Documentation, Release 1.1.0.dev0

async handler(reader, writer)
Handles requests from the connected Clients and replies or notifications from the connected
Services.

Parameters

• reader (asyncio.StreamReader) – The stream reader.

• writer (asyncio.StreamWriter) – The stream writer.

async release_lock(writer, uid, service)
A request from a Client to unlock a Service.

New in version 1.0.

Parameters

• writer (asyncio.StreamWriter) – The stream writer of the Client.

• uid (str) – The unique identifier of the request.

• service (str) – The name of the Service that the Client wants to release
a lock with.

async remove_peer(id_type, writer)
Remove this peer from the registry of connected peers.

Parameters

• id_type (str) – The type of the connection, either 'client' or
'service'.

• writer (asyncio.StreamWriter) – The stream writer of the peer.

async close_writer(writer)
Close the connection to the asyncio.StreamWriter.

Log that the connection is closing, drains the writer and then closes the connection.

Parameters
writer (asyncio.StreamWriter) – The stream writer to close.

async shutdown_manager()

Disconnect all Services and Clients from the Manager and then shut down the Manager.

identity()

dict: The identity of the Network Manager.

async link(writer, uid, service)
A request from a Client to link it with a Service.

Parameters

• writer (asyncio.StreamWriter) – The stream writer of the Client.

• uid (str) – The unique identifier of the request.

• service (str) – The name of the Service that the Client wants to link
with.

1.10. MSL-Network API Documentation 61

https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

async unlink(writer, uid, service)
A request from a Client to unlink it from a Service.

New in version 0.5.

Parameters

• writer (asyncio.StreamWriter) – The stream writer of the Client.

• uid (str) – The unique identifier of the request.

• service (str) – The name of the Service that the Client wants to unlink
from.

async write_request(writer, attribute, *args, **kwargs)
Write a request to a Client or to a Service.

Parameters

• writer (asyncio.StreamWriter) – The stream writer of the Client or
Service.

• attribute (str) – The name of the attribute to request.

• args – The arguments that attribute requires.

• kwargs – The key-value pairs that attribute requires.

class msl.network.manager.Peer(writer)
Bases: object

Metadata about a peer that is connected to the Network Manager.

Attention: Not to be called directly. To be called when the Network Manager receives a
new_connection() request.

Parameters
writer (asyncio.StreamWriter) – The stream writer for the peer.

msl.network.manager.run_forever(*, host=None, port=1875, auth_hostname=False,
auth_login=False, auth_password=None, database=None,
disable_tls=False, cert_file=None, key_file=None,
key_file_password=None, log_level='INFO', log_file=None)

Start the event loop for the Network Manager.

This is a blocking function. It will not return until the event loop of the Manager has stopped.

New in version 0.4.

Changed in version 1.0: Renamed certfile to cert_file. Renamed keyfile to key_file. Renamed
keyfile_password to key_file_password. Renamed logfile to log_file. Removed the debug keyword
argument. Added the log_level keyword argument. Added the host keyword argument.

Parameters

• host (str, optional) – The hostname or IP address to run the Network
Manager on. If unspecified then all network interfaces are used.

62 Chapter 1. Contents

https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/stdtypes.html#str

MSL-Network Documentation, Release 1.1.0.dev0

• port (int, optional) – The port number to run the Network Manager on.

• auth_hostname (bool, optional) – If True then only connections from
trusted hosts are allowed. If enabling auth_hostname then do not specify an
auth_password and do not enable auth_login. Run msl-network hostname
--help for more details.

• auth_login (bool, optional) – If True then checks a users login credentials
(the username and password) before a Client or Service successfully con-
nects. If enabling auth_login then do not specify an auth_password and do not
enable auth_hostname. Run msl-network user --help for more details.

• auth_password (str, optional) – The password of the Network Manager.
Essentially, this can be a thought of as a single password that all Clients
and Services need to specify before the connection to the Network Manager
is successful. Can be a path to a file that contains the password on the first
line in the file (WARNING!! if the path does not exist then the value of the
path becomes the password). If using an auth_password then do not enable
auth_login nor auth_hostname.

• database (str, optional) – The path to the sqlite3 database that contains the
records for the following tables – ConnectionsTable, HostnamesTable,
UsersTable. If None then loads the default database.

• disable_tls (bool, optional) – Whether to use TLS for the communication
protocol.

• cert_file (str, optional) – The path to the TLS certificate file. See
load_cert_chain() for more details. Only required if using TLS.

• key_file (str, optional) – The path to the TLS key file. See
load_cert_chain() for more details.

• key_file_password (str, optional) – The password to decrypt the key_file.
See load_cert_chain() for more details. Can be a path to a file that contains
the password on the first line in the file (WARNING!! if the path does not exist
then the value of the path becomes the password).

• log_level (str or int, optional) – The logging level to initially use. Can
also be changed via an admin_request().

• log_file (str, optional) – The file path to write logging messages to. If
None then uses the default file path.

msl.network.manager.run_services(*services, **kwargs)
This function starts the Network Manager and then starts the specified Services.

This is a convenience function for running the Network Manager only when the specified
Services are all connected to the Manager. Once all Services disconnect from the Manager
then the Manager shuts down.

This is a blocking call. It will not return until the event loop of the Manager has stopped.

New in version 0.4.

Parameters

• services – The Services to run on the Manager. Each Service must be
instantiated but not started. This run_services() function will start each

1.10. MSL-Network API Documentation 63

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#levels
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

MSL-Network Documentation, Release 1.1.0.dev0

Service.

• kwargs – Keyword arguments are passed to run_forever() and to start().
The keyword arguments that are passed to run_forever() and start() that
are not valid for that function are silently ignored.

Examples

If you want to allow a Client to be able to shut down a Service then implement
a public shutdown_service() method on the Service. For example, the following
shutdownable_example.py is a script that starts a Network Manager and two Services

shutdownable_example.py

from msl.network import Service, run_services

class AddService(Service):

def add(self, a, b):
return a + b

def shutdown_service(self, *args, **kwargs):
do whatever you need to do before the AddService shuts down
return whatever you want
return True

class SubtractService(Service):

def subtract(self, a, b):
return a - b

def shutdown_service(self, *args, **kwargs):
do whatever you need to do before the SubtractService shuts␣

→˓down
return whatever you want
return 'Success!'

run_services(AddService(), SubtractService())

Then the Client script could be

from msl.network import connect

cxn = connect()
a = cxn.link('AddService')
s = cxn.link('SubtractService')
assert a.add(1, 2) == 3
assert s.subtract(1, 2) == -1
a.shutdown_service()
s.shutdown_service()

When both Services have shut down then the Network Manager will also shut down and the

64 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

run_services() function will no longer be blocking the execution of shutdownable_example.
py.

msl.network.manager.filter_run_forever_kwargs(**kwargs)
From the specified keyword arguments only return those that are valid for run_forever().

New in version 0.4.

Parameters
kwargs – All keyword arguments that are not part of the function signature for
run_forever() are silently ignored and are not included in the output.

Returns
dict – Valid keyword arguments that can be passed to run_forever().

msl.network.network module

Base classes for a Manager, Service and Client.

class msl.network.network.Network

Bases: object

Base class for the Manager, Service and Client.

identity()→ dict
The identity of a device on the network.

All devices on the network must be able to identify themselves to any other device that is
connected to the network. There are 3 possible types of network devices – a Manager, a
Service and a Client. The member names and JSON datatype for each network device is
described below.

• Manager

hostname: string
The name of the computer that the Network Manager is running on.

port: integer
The port number that the Network Manager is running on.

attributes: object
An object (a Python dict) of public attributes that the Network Manager
provides. Users who are an administrator of the Network Manager can re-
quest private attributes, see admin_request().

language: string
The programming language that the Network Manager is running on.

os: string
The name of the operating system that the Network Manager is running on.

clients: object
An object (a Python dict) of all Client devices that are currently connected
to the Network Manager.

services: object
An object (a Python dict) of all Service devices that are currently con-
nected to the Network Manager.

1.10. MSL-Network API Documentation 65

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#dict
https://www.json.org/
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

MSL-Network Documentation, Release 1.1.0.dev0

• Service

type: string
This must be equal to 'service' (case-insensitive).

name: string
The name to associate with the Service (can contain spaces).

attributes: object
An object (a Python dict) of the attributes that the Service provides. The
keys are the method names and the values are the method signatures (ex-
pressed as a string).

The attributes get populated automatically when subclassing Service. If
you are creating a Service in another programming language then you can
use the following as an example for how to define an attributes object:

{
"pi": "() -> float",
"add_integers": "(x:int, y:int) -> int",
"scalar_multiply": "(a:float, data:List[floats]) ->␣

→˓List[floats]"
}

This Service would provide a method named pi that takes no inputs and re-
turns a floating-point number, a method named add_integers that takes pa-
rameters named x and y as integer inputs and returns an integer, and a method
named scalar_multiply that takes parameters named a as a floating-point
number and data as an array of floating-point numbers as inputs and returns
an array of floating-point numbers.

The key must be equal to the name of the method that the Service provides;
however, the value (the method signature) is only used as a helpful guide to let
a Client know what the method takes as inputs and what the method returns.
How you express the method signature is up to you. The above example could
also be expressed as:

{
"pi": "() -> 3.1415926...",
"add_integers": "(int32 x, int32 y) -> x+y",
"scalar_multiply": "(double a, *double data) -> *double

→˓"
}

language: string, optional
The programming language that the Service is running on.

os: string, optional
The name of the operating system that the Service is running on.

max_clients: integer, optional
The maximum number of Clients that can be linked with the Service. If
the value is ≤ 0 then that means that an unlimited number of Clients can
be linked (this is the default setting if max_clients is not specified).

• Client

66 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict

MSL-Network Documentation, Release 1.1.0.dev0

type: string
This must be equal to 'client' (case-insensitive).

name: string
The name to associate with the Client (can contain spaces).

language: string, optional
The programming language that the Client is running on.

os: string, optional
The name of the operating system that the Client is running on.

Returns
dict – The identity of the network device.

static set_logging_level(level: str | int)→ bool
Set the logging level.

Parameters
level (int or str) – The logging level of the msl.network logger.

Returns
bool – Whether setting the logging level was successful.

class msl.network.network.Device(name=None)
Bases: Network

Base class for a Service and Client.

New in version 1.0.

Parameters
name (str, optional) – The name of the device as it will appear on the Network
Manager. If not specified then the class name is used.

property address_manager

The address of the Manager that this device is connected to.

Type
str

property loop_thread_id

Identifier of the thread running the event loop.

Returns None if the event loop is not running.

New in version 1.0.

property name

The name of the device on the Manager.

Type
str

property port

The port number of this device that is being used for the connection to the Manager.

Type
int

1.10. MSL-Network API Documentation 67

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#levels
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

MSL-Network Documentation, Release 1.1.0.dev0

add_tasks(*coros_or_futures)
Additional tasks to run in the event loop.

New in version 1.0.

Parameters
coros_or_futures – Coroutines or futures that will be passed to asyncio.
gather() when the event loop runs.

shutdown_handler()

Called after the connection to the Network Manager has been lost but before the event loop
stops.

Override this method to do any necessary cleanup.

New in version 1.0.

msl.network.service module

Base class for all Services.

class msl.network.service.Service(*, name=None, max_clients=None,
ignore_attributes=None)

Bases: Device

Base class for all Services.

New in version 0.4: The name and max_clients keyword argument.

New in version 0.5: The ignore_attributes keyword argument.

New in version 1.0: If a method of the Service returns an object that is not natively JSON serial-
izable, then the returned object can have a callable to_json() method and the value returned by
to_json() will be used in the response to the Client.

Parameters

• name (str, optional) – The name of the Service as it will appear on the Net-
work Manager. If not specified then the class name is used. You can also
specify the name in the start() method.

• max_clients (int, optional) – The maximum number of Clients that can
be linked with this Service. A value ≤ 0 or None means that there is no limit.

• ignore_attributes (str or list of str, optional) – The names of
the attributes to not include in the identity of the Service. See
ignore_attributes() for more details.

property max_clients

The maximum number of Clients that can be linked with this Service. A value ≤ 0 means
an unlimited number of Clients can be linked.

Type
int

emit_notification(*args, **kwargs)
Emit a notification to all Clients that are Linked with this Service.

New in version 0.5.

68 Chapter 1. Contents

https://docs.python.org/3/library/asyncio-task.html#asyncio.gather
https://docs.python.org/3/library/asyncio-task.html#asyncio.gather
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

MSL-Network Documentation, Release 1.1.0.dev0

Parameters

• args – The arguments to emit.

• kwargs – The keyword arguments to emit.

See also:

emit_notification_threadsafe(), notification_handler()

emit_notification_threadsafe(*args, **kwargs)
A thread-safe implementation of emit_notification().

When a Service handles a request, it does so in a separate thread than the event loop is
running in. Therefore, if a method of the Service class wants to emit a notification while it
is handling a request then it must emit the notification in a thread-safe manner.

New in version 1.0.

Parameters

• args – The arguments to emit.

• kwargs – The keyword arguments to emit.

See also:

emit_notification(), notification_handler()

ignore_attributes(*names)
Ignore attributes from being added to the identity of the Service.

There are a few reasons why you may want to call this method:

• If you see warnings that an object is not JSON serializable or that the signature of an
attribute cannot be found when starting the Service and you prefer not to see the warn-
ings.

• If you do not want an attribute to be made publicly known that it exists. However, a
Client can still access the ignored attributes.

Private attributes (i.e., attributes that start with an underscore) are automatically ignored and
cannot be accessed from a Client on the network.

If you want to ignore any attributes then you must call ignore_attributes() before calling
start().

New in version 0.5.

Parameters
names – The names of the attributes to not include in the identity of the
Service.

start(*, name=None, host='localhost', port=1875, timeout=10, username=None,
password=None, password_manager=None, read_limit=None, disable_tls=False,
cert_file=None, assert_hostname=True, auto_save=False)

Start the Service.

See connect() for the description of each parameter.

1.10. MSL-Network API Documentation 69

MSL-Network Documentation, Release 1.1.0.dev0

property request

Returns the latest request.

This property is meant to be used by a subclass that may want to know the information about
the request while processing it.

Since a request is executed in a separate thread and this property returns the latest request,
the subclass should immediately extract the necessary information from the request before
the Service receives a new request.

The key-value pairs in the request are:

{
'args': list,
'attribute': str,
'kwargs': dict,
'service': str (the name of this Service),
'uid': str,
'requester': str,

}

New in version 1.1.

Type
dict

msl.network.service.filter_service_start_kwargs(**kwargs)
From the specified keyword arguments only return those that are valid for start().

New in version 0.4.

Parameters
kwargs – All keyword arguments that are not part of the method signature for
start() are silently ignored and are not included in the output.

Returns
dict – Valid keyword arguments that can be passed to start().

msl.network.ssh module

Helper functions for connecting to a remote computer via SSH.

Follow these instructions to install/enable an SSH server on Windows. You can also create an SSH server
using the paramiko package (which is included when MSL-Network is installed).

The two functions start_manager() and parse_console_script_kwargs() are meant to be used
together to automatically start a Network Manager, and possibly Services, on a remote computer.

See Starting a Service from another computer for an example on how to start a Service on a Raspberry
Pi from another computer.

msl.network.ssh.parse_console_script_kwargs()

Parses the command line for keyword arguments sent from a remote computer.

New in version 0.4.

70 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://www.ssh.com/academy/ssh
https://winscp.net/eng/docs/guide_windows_openssh_server
https://www.ssh.com/academy/ssh
https://www.ssh.com/academy/ssh
https://docs.paramiko.org/en/stable/api/server.html

MSL-Network Documentation, Release 1.1.0.dev0

Returns
dict – The keyword arguments that were passed from start_manager().

msl.network.ssh.start_manager(host, console_script_path, *, ssh_username=None,
ssh_password=None, timeout=10, as_sudo=False,
missing_host_key_policy=None, paramiko_kwargs=None,
**kwargs)

Start a Network Manager on a remote computer.

New in version 0.4.

Parameters

• host (str) – The hostname (or IP address) of the remote computer. For ex-
ample – '192.168.1.100', 'raspberrypi', 'pi@raspberrypi'

• console_script_path (str) – The file path to where the console script is
located on the remote computer.

• ssh_username (str, optional) – The username to use to establish the SSH
connection. If None and the ssh_username is not specified in host then you
will be asked for the ssh_username.

• ssh_password (str, optional) – The password to use to establish the SSH
connection. If None then you will be asked for the ssh_password.

• timeout (int or float, optional) – The maximum number of seconds to wait
for the SSH connection.

• as_sudo (bool, optional) – Whether to run the console script as a superuser.

• missing_host_key_policy (MissingHostKeyPolicy, optional) – The
policy to use when connecting to servers without a known host key. If None
then uses AutoAddPolicy.

• paramiko_kwargs (dict, optional) – Additional keyword arguments that are
passed to ssh.connect.

• kwargs – The keyword arguments in run_forever(), and if that console
script also starts Services on the remote computer as well, then the key-
word arguments also found in start(). The kwargs should be parsed by
parse_console_script_kwargs() on the remote computer.

msl.network.ssh.connect(host, *, username=None, password=None, timeout=10,
missing_host_key_policy=None, **kwargs)

SSH to a remote computer.

New in version 0.4.

Parameters

• host (str) – The hostname (or IP address) of the remote computer. For ex-
ample – '192.168.1.100', 'raspberrypi', 'pi@raspberrypi'

• username (str, optional) – The username to use to establish the SSH connec-
tion. If None and the username is not specified in host then you will be asked
for the username.

• password (str, optional) – The password to use to establish the SSH connec-
tion. If None then you will be asked for the password.

1.10. MSL-Network API Documentation 71

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html#the-console-scripts-entry-point
https://docs.python.org/3/library/stdtypes.html#str
https://www.ssh.com/academy/ssh
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.ssh.com/academy/ssh
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.ssh.com/academy/ssh
https://docs.python.org/3/library/functions.html#bool
https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html#the-console-scripts-entry-point
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.MissingHostKeyPolicy
https://docs.python.org/3/library/constants.html#None
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.AutoAddPolicy
https://docs.python.org/3/library/stdtypes.html#dict
https://www.ssh.com/academy/ssh
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://www.ssh.com/academy/ssh
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.ssh.com/academy/ssh
https://docs.python.org/3/library/constants.html#None

MSL-Network Documentation, Release 1.1.0.dev0

• timeout (int or float, optional) – The maximum number of seconds to wait
for the SSH connection.

• missing_host_key_policy (MissingHostKeyPolicy, optional) – The
policy to use when connecting to servers without a known host key. If None
then uses AutoAddPolicy.

• kwargs – Additional keyword arguments that are passed to SSHClient.
connect.

Returns
SSHClient – The SSH connection to the remote computer.

msl.network.ssh.exec_command(ssh_client, command, *, timeout=10)
Execute the SSH command on the remote computer.

New in version 0.4.

Parameters

• ssh_client (SSHClient) – The SSH client that has already established a
connection to the remote computer. See also connect().

• command (str) – The command to execute on the remote computer.

• timeout (int or float, optional) – The maximum number of seconds to wait
for the command to finish.

Raises
RuntimeError – If an error occurred. Either a timeout or stderr on the remote
computer contains text from executing the command.

Returns
list of str – stdout from the remote computer.

msl.network.utils module

Common functions used by MSL-Network.

msl.network.utils.ensure_root_path(path)
Ensure that the root directory of the file path exists.

Parameters
path (str) – A file path. For example, if path is /the/path/to/my/test/file.
txt then this function would ensure that the /the/path/to/my/test directories
exist (creating the intermediate directories if necessary).

msl.network.utils.parse_terminal_input(line)
Parse text from a terminal connection.

See, Connecting from a Terminal for more details.

Parameters
line (str) – The input text from the terminal.

Returns
dict – The JSON object.

72 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://www.ssh.com/academy/ssh
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.MissingHostKeyPolicy
https://docs.python.org/3/library/constants.html#None
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.AutoAddPolicy
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient
https://www.ssh.com/academy/ssh
https://www.ssh.com/academy/ssh
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient
https://www.ssh.com/academy/ssh
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://www.json.org/

MSL-Network Documentation, Release 1.1.0.dev0

1.11 License

MIT License

Copyright (c) 2017 - 2023, Measurement Standards Laboratory of New Zealand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

1.12 Developers

• Joseph Borbely <joseph.borbely@measurement.govt.nz>

1.13 Release Notes

1.13.1 Version 1.1.0 (in development)

• Added

– support for Python 3.12

– the Service.request property

– loads_kwargs and dumps_kwargs keyword arguments to use()

• Fixed

– the to_json() method was not reliably called for an object, which resulted in the object not
being JSON serializable

• Removed

– Support for Python 3.6 and 3.7

1.11. License 73

mailto:joseph.borbely@measurement.govt.nz

MSL-Network Documentation, Release 1.1.0.dev0

1.13.2 Version 1.0.0 (2023-06-16)

• Added

– a Link can create an exclusive or shared lock with a Service

– add service_max_clients property to a Link and LinkedClient

– the loop_thread_id property for a Service and a Client

– the emit_notification_threadsafe() method for a Service

– ability to specify the host to use when starting a Manager

– support for Python 3.9, 3.10 and 3.11

– set_logging_level() to be able to set the logging level at runtime

– ability to add tasks to the event loop via the add_tasks() method

– the shutdown_handler() method is called after the connection to the Manager is lost but
before the event loop stops

– ability to use all Database classes as a context manager (i.e., using a with statement)

– the --log-level flag to the start command

– the delete command-line argument to delete files that are created by MSL-Network

– orjson as a JSON backend to Package

– JSON, UJSON, RAPIDJSON and SIMPLEJSON are aliases for the JSON backends in Package

– the read_limit keyword arguments to connect() and start()

– the auto_save keyword argument to connect() and get_ssl_context()

– the digest_size keyword argument to generate_certificate() and
get_fingerprint()

– the name and extensions keyword arguments to generate_certificate(),

– **kwargs to get_ssl_context()

• Changed

– the result object that is returned by a Service response can implement a callable to_json()
method

– the value of the algorithm keyword argument in get_fingerprint() can now also be of
type str

– renamed uuid to be uid in the JSON format

– making an asynchronous request now returns a concurrent.futures.Future instance in-
stead of an asyncio.Future instance

– Client and Service are subclasses of Device

– move the utils.localhost_aliases function to be defined as LOCALHOST_ALIASES

– renamed the Client.manager method to identities()

– renamed certfile to cert_file in connect(), start() and get_ssl_context()

– can now change which JSON backend to use during runtime by calling the use() function

74 Chapter 1. Contents

https://pypi.org/project/orjson/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future

MSL-Network Documentation, Release 1.1.0.dev0

– moved the msl.network.constants.JSONPackage class to msl.network.json.
Package

– renamed the command line arguments --certfile to --cert-file, --keyfile to
--key-file, --keyfile-password to --key-file-password, and --logfile to
--log-file for the start command

– use T as the separator between the date and time in a ConnectionsTable

– rename the keyword arguments timestamp1 to start and timestamp2 to end in
connections()

– the default filename for the certificate and key files now use 'localhost' instead of the
value of HOSTNAME

• Fixed

– an AttributeError could be raised when generating the identity of a Service

– can now handle multiple requests/replies contained within the same network packet

• Removed

– Support for Python 3.5

– the MSLNetworkError exception class (a RuntimeError is raised instead)

– the Service.set_debug method

– the termination and encoding class attributes of Network

– the send_pending_requests, raise_latest_error and wait methods of a Client

– the --debug flag from the start command

– the utils.new_selector_event_loop function

– the constants.JSON attribute

– YAJL as a JSON backend option

1.13.3 Version 0.5.0 (2020-03-18)

• Added

– support for Python 3.8

– the utils.new_selector_event_loop function to create a new asyncio.SelectorEventLoop

– the --logfile command line argument for the start command

– a Service can emit notifications to all Clients that are linked with it

– a Service now accepts an ignore_attributes keyword argument when it is instantiated and also
has an ignore_attributes method

– a Link can unlink from a Service

– the LinkedClient.client property

– 1.0.0.127.in-addr.arpa as a localhost alias

• Changed

1.13. Release Notes 75

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://pypi.org/project/yajl/

MSL-Network Documentation, Release 1.1.0.dev0

– use __package__ as the logger name

– the FileHandler and StreamHandler that are added to the root logger now use a decimal point
instead of a comma between the seconds and milliseconds values

– renamed the disconnect_service method for a Link and a Service (which was added in version
0.4.0) to be shutdown_service

• Removed

– the Service._shutdown method since it is no longer necessary to call this method from the
Service subclass because shutting down happens automatically behind the scenes

1.13.4 Version 0.4.1 (2019-07-23)

• Added

– 1.0.ip6.
arpa as a localhost alias

• Changed

– calling the Client.manager(as_string=True) method now prints the attributes analogous to
how a Client would call the method of a Service

• Fixed

– the timeout value for creating a LinkedClient is now the total time that it takes to connect
to the Network Manager plus the time required to link with the Service (this fixes a race
condition when starting a Service on a remote computer and then trying to link to the same
Service)

1.13.5 Version 0.4.0 (2019-04-16)

• Added

– the ssh module

– a LinkedClient class

– the run_forever (to start the Manager) and the run_services (to start the Manager and then
start the Services) functions

– the filter_service_start_kwargs, filter_run_forever_kwargs and filter_client_connect_kwargs
functions

– a disconnect_service method to Link

– shorter argument name options for some CLI parameters

– a Service now accepts name and max_clients as keyword arguments when it is instantiated

• Changed

– the following CLI changes to argument names for the certgen command

∗ --key-path became --keyfile

∗ --key-password became --keyfile-password

76 Chapter 1. Contents

MSL-Network Documentation, Release 1.1.0.dev0

– the following CLI changes to argument names for the keygen command

∗ --path became --out

– the following CLI changes to argument names for the start command

∗ --cert became --certfile

∗ --key became --keyfile

∗ --key-password became --keyfile-password

– the certificate keyword argument for the connect and get_ssl_context functions and for the
Service.start method was changed to certfile

– the as_yaml keyword argument for the Client.manager method was changed to as_string

– a Client can no longer request a private attribute – i.e., an attribute that starts with a _ (an
underscore) – from a Service

– the default timeout value for connecting to the Manager is now 10 seconds

• Fixed

– perform error handling if the Manager attempts to start on a port that is already in use

– issue #7 - a Service can now specify the maximum number of Clients that can be linked with
it

– issue #6 - the password_manager keyword argument is now used properly when starting a
Service

• Removed

– the name class attribute for a Service

– the send_request method for a Client (must link with a Service)

1.13.6 Version 0.3.0 (2019-01-06)

• Added

– every request from a Client can now specify a timeout value

– the docs now include an example for how to send requests to the Echo Service

• Changed

– the default timeout value for connecting to the Manager is now 10 seconds

– the __repr__ method for a Client no longer includes the id as a hex number

• Fixed

– issue #5

– issue #4

– issue #3

– issue #2

– issue #1

• Removed

1.13. Release Notes 77

https://github.com/MSLNZ/msl-network/issues/7
https://github.com/MSLNZ/msl-network/issues/6
https://github.com/MSLNZ/msl-network/issues/5
https://github.com/MSLNZ/msl-network/issues/4
https://github.com/MSLNZ/msl-network/issues/3
https://github.com/MSLNZ/msl-network/issues/2
https://github.com/MSLNZ/msl-network/issues/1

MSL-Network Documentation, Release 1.1.0.dev0

– the __repr__ method for a Service

1.13.7 Version 0.2.0 (2018-08-24)

• Added

– a wakeup() Task in debug mode on Windows (see: https://bugs.python.org/issue23057)

– the version_info named tuple now includes a releaselevel

– example for creating a Client and a Service in LabVIEW

– the ability to establish a connection to the Network Manager without using TLS

– a timeout kwarg to Service.start()

– an Echo Service to the examples

• Changed

– rename ‘async’ kwarg to be ‘asynchronous’ (for Python 3.7 support)

– the termination bytes were changed from \n to \r\n

1.13.8 Version 0.1.0 (2017-12-14)

• Initial release

78 Chapter 1. Contents

https://bugs.python.org/issue23057

CHAPTER

TWO

INDEX

• modindex

79

MSL-Network Documentation, Release 1.1.0.dev0

80 Chapter 2. Index

PYTHON MODULE INDEX

m
msl.network, 40
msl.network.cli_certdump, 34
msl.network.cli_certgen, 34
msl.network.cli_delete, 35
msl.network.cli_hostname, 36
msl.network.cli_keygen, 37
msl.network.cli_start, 37
msl.network.cli_user, 38
msl.network.client, 40
msl.network.constants, 48
msl.network.cryptography, 49
msl.network.database, 52
msl.network.json, 57
msl.network.manager, 59
msl.network.network, 65
msl.network.service, 68
msl.network.ssh, 70
msl.network.utils, 72

81

MSL-Network Documentation, Release 1.1.0.dev0

82 Python Module Index

INDEX

A
acquire_lock() (msl.network.client.Link

method), 43
acquire_lock()

(msl.network.client.LinkedClient
method), 47

acquire_lock()
(msl.network.manager.Manager method),
59

add_parser_certdump() (in module
msl.network.cli_certdump), 34

add_parser_certgen() (in module
msl.network.cli_certgen), 35

add_parser_delete() (in module
msl.network.cli_delete), 35

add_parser_hostname() (in module
msl.network.cli_hostname), 36

add_parser_keygen() (in module
msl.network.cli_keygen), 37

add_parser_start() (in module
msl.network.cli_start), 38

add_parser_user() (in module
msl.network.cli_user), 39

add_tasks() (msl.network.network.Device
method), 67

address_manager
(msl.network.client.LinkedClient prop-
erty), 47

address_manager (msl.network.network.Device
property), 67

admin_request() (msl.network.client.Client
method), 41

admin_request()
(msl.network.client.LinkedClient
method), 47

B
BUILTIN (msl.network.json.Package attribute), 57

C
CERT_DIR (in module msl.network.constants), 48

check_identity()
(msl.network.manager.Manager method),
60

check_manager_password()
(msl.network.manager.Manager method),
60

check_user() (msl.network.manager.Manager
method), 60

Client (class in msl.network.client), 41
client (msl.network.client.LinkedClient prop-

erty), 47
close() (msl.network.database.Database

method), 53
close_writer()

(msl.network.manager.Manager method),
61

column_datatypes()
(msl.network.database.Database
method), 53

column_names()
(msl.network.database.Database
method), 53

connect() (in module msl.network.client), 40
connect() (in module msl.network.ssh), 71
connection (msl.network.database.Database

property), 52
connections() (msl.network.database.ConnectionsTable

method), 54
ConnectionsTable (class in

msl.network.database), 54
convert_datetime() (in module

msl.network.database), 57
cursor (msl.network.database.Database prop-

erty), 53

D
Database (class in msl.network.database), 52
DATABASE (in module msl.network.constants), 49
delete() (msl.network.database.HostnamesTable

method), 55
delete() (msl.network.database.UsersTable

83

MSL-Network Documentation, Release 1.1.0.dev0

method), 56
deserialize() (in module msl.network.json), 59
Device (class in msl.network.network), 67
disconnect() (msl.network.client.Client

method), 42
disconnect() (msl.network.client.Link method),

45
disconnect() (msl.network.client.LinkedClient

method), 47

E
emit_notification()

(msl.network.service.Service method), 68
emit_notification_threadsafe()

(msl.network.service.Service method), 69
ensure_root_path() (in module

msl.network.utils), 72
exec_command() (in module msl.network.ssh), 72
execute() (in module

msl.network.cli_certdump), 34
execute() (in module msl.network.cli_certgen),

35
execute() (in module msl.network.cli_delete), 35
execute() (in module

msl.network.cli_hostname), 36
execute() (in module msl.network.cli_keygen),

37
execute() (in module msl.network.cli_start), 38
execute() (in module msl.network.cli_user), 39
execute() (msl.network.database.Database

method), 53

F
filter_client_connect_kwargs() (in module

msl.network.client), 41
filter_run_forever_kwargs() (in module

msl.network.manager), 65
filter_service_start_kwargs() (in module

msl.network.service), 70

G
generate_certificate() (in module

msl.network.cryptography), 50
generate_key() (in module

msl.network.cryptography), 49
get_default_cert_path() (in module

msl.network.cryptography), 51
get_default_key_path() (in module

msl.network.cryptography), 51
get_fingerprint() (in module

msl.network.cryptography), 51

get_handshake_data()
(msl.network.manager.Manager method),
60

get_metadata() (in module
msl.network.cryptography), 51

get_metadata_as_string() (in module
msl.network.cryptography), 51

get_ssl_context() (in module
msl.network.cryptography), 52

get_user() (msl.network.database.UsersTable
method), 56

H
handler() (msl.network.manager.Manager

method), 60
HOME_DIR (in module msl.network.constants), 48
HOSTNAME (in module msl.network.constants), 48
hostnames() (msl.network.database.HostnamesTable

method), 55
HostnamesTable (class in

msl.network.database), 55

I
identities() (msl.network.client.Client

method), 42
identities() (msl.network.client.LinkedClient

method), 47
identity() (msl.network.client.LinkedClient

method), 47
identity() (msl.network.manager.Manager

method), 61
identity() (msl.network.network.Network

method), 65
ignore_attributes()

(msl.network.service.Service method), 69
insert() (msl.network.database.ConnectionsTable

method), 54
insert() (msl.network.database.HostnamesTable

method), 55
insert() (msl.network.database.UsersTable

method), 56
is_admin() (msl.network.database.UsersTable

method), 57
is_connected() (msl.network.client.Client

method), 42
is_connected()

(msl.network.client.LinkedClient
method), 47

IS_LINUX (in module msl.network.constants), 49
is_password_valid()

(msl.network.database.UsersTable
method), 57

84 Index

MSL-Network Documentation, Release 1.1.0.dev0

is_user_registered()
(msl.network.database.UsersTable
method), 57

IS_WINDOWS (in module msl.network.constants),
49

J
JSON (msl.network.json.Package attribute), 58

K
KEY_DIR (in module msl.network.constants), 49

L
Link (class in msl.network.client), 43
link (msl.network.client.LinkedClient property),

47
link() (msl.network.client.Client method), 42
link() (msl.network.manager.Manager method),

61
LinkedClient (class in msl.network.client), 46
load_certificate() (in module

msl.network.cryptography), 51
load_key() (in module

msl.network.cryptography), 50
LOCALHOST_ALIASES (in module

msl.network.constants), 49
loop_thread_id (msl.network.network.Device

property), 67

M
Manager (class in msl.network.manager), 59
max_clients (msl.network.service.Service prop-

erty), 68
module

msl.network, 40
msl.network.cli_certdump, 34
msl.network.cli_certgen, 34
msl.network.cli_delete, 35
msl.network.cli_hostname, 36
msl.network.cli_keygen, 37
msl.network.cli_start, 37
msl.network.cli_user, 38
msl.network.client, 40
msl.network.constants, 48
msl.network.cryptography, 49
msl.network.database, 52
msl.network.json, 57
msl.network.manager, 59
msl.network.network, 65
msl.network.service, 68
msl.network.ssh, 70
msl.network.utils, 72

msl.network
module, 40

msl.network.cli_certdump
module, 34

msl.network.cli_certgen
module, 34

msl.network.cli_delete
module, 35

msl.network.cli_hostname
module, 36

msl.network.cli_keygen
module, 37

msl.network.cli_start
module, 37

msl.network.cli_user
module, 38

msl.network.client
module, 40

msl.network.constants
module, 48

msl.network.cryptography
module, 49

msl.network.database
module, 52

msl.network.json
module, 57

msl.network.manager
module, 59

msl.network.network
module, 65

msl.network.service
module, 68

msl.network.ssh
module, 70

msl.network.utils
module, 72

N
name (msl.network.client.LinkedClient property),

48
NAME (msl.network.database.ConnectionsTable at-

tribute), 54
NAME (msl.network.database.HostnamesTable at-

tribute), 55
NAME (msl.network.database.UsersTable at-

tribute), 55
name (msl.network.network.Device property), 67
Network (class in msl.network.network), 65
new_connection()

(msl.network.manager.Manager method),
59

Index 85

MSL-Network Documentation, Release 1.1.0.dev0

notification_handler()
(msl.network.client.Link method), 45

notification_handler()
(msl.network.client.LinkedClient
method), 47

O
OR (msl.network.json.Package attribute), 58
ORJSON (msl.network.json.Package attribute), 58

P
Package (class in msl.network.json), 57
parse_console_script_kwargs() (in module

msl.network.ssh), 70
parse_terminal_input() (in module

msl.network.utils), 72
path (msl.network.database.Database property),

52
Peer (class in msl.network.manager), 62
PORT (in module msl.network.constants), 48
port (msl.network.client.LinkedClient property),

48
port (msl.network.network.Device property), 67

R
RAPID (msl.network.json.Package attribute), 58
RAPIDJSON (msl.network.json.Package attribute),

58
records() (msl.network.database.UsersTable

method), 56
release_lock() (msl.network.client.Link

method), 44
release_lock()

(msl.network.client.LinkedClient
method), 48

release_lock()
(msl.network.manager.Manager method),
61

remove_peer() (msl.network.manager.Manager
method), 61

request (msl.network.service.Service property),
69

run_forever() (in module
msl.network.manager), 62

run_services() (in module
msl.network.manager), 63

S
serialize() (in module msl.network.json), 59
Service (class in msl.network.service), 68
service_address (msl.network.client.Link prop-

erty), 44

service_address
(msl.network.client.LinkedClient prop-
erty), 48

service_attributes (msl.network.client.Link
property), 44

service_attributes
(msl.network.client.LinkedClient prop-
erty), 48

service_error_handler()
(msl.network.client.LinkedClient
method), 47

service_language (msl.network.client.Link
property), 44

service_language
(msl.network.client.LinkedClient prop-
erty), 48

service_max_clients (msl.network.client.Link
property), 44

service_max_clients
(msl.network.client.LinkedClient prop-
erty), 48

service_name (msl.network.client.Link prop-
erty), 44

service_name (msl.network.client.LinkedClient
property), 48

service_os (msl.network.client.Link property),
45

service_os (msl.network.client.LinkedClient
property), 48

set_logging_level()
(msl.network.network.Network static
method), 67

shutdown_handler()
(msl.network.network.Device method),
68

shutdown_manager()
(msl.network.manager.Manager method),
61

shutdown_service() (msl.network.client.Link
method), 46

shutdown_service()
(msl.network.client.LinkedClient
method), 47

SIMPLE (msl.network.json.Package attribute), 58
SIMPLEJSON (msl.network.json.Package attribute),

58
spawn() (msl.network.client.Client method), 43
spawn() (msl.network.client.LinkedClient

method), 47
start() (msl.network.service.Service method),

69

86 Index

MSL-Network Documentation, Release 1.1.0.dev0

start_manager() (in module msl.network.ssh),
71

T
table_info() (msl.network.database.Database

method), 53
tables() (msl.network.database.Database

method), 53

U
UJSON (msl.network.json.Package attribute), 58
ULTRA (msl.network.json.Package attribute), 58
unlink() (msl.network.client.Client method), 43
unlink() (msl.network.client.Link method), 46
unlink() (msl.network.client.LinkedClient

method), 47
unlink() (msl.network.manager.Manager

method), 61
update() (msl.network.database.UsersTable

method), 56
use() (in module msl.network.json), 58
usernames() (msl.network.database.UsersTable

method), 56
users() (msl.network.database.UsersTable

method), 56
UsersTable (class in msl.network.database), 55

V
version_info (in module msl.network), 40

W
write_request()

(msl.network.manager.Manager method),
62

Index 87

	Contents
	Install MSL-Network
	Compatibility
	Dependencies

	Usage
	Start the Network Manager
	Start a Service on the Network Manager
	BasicMath Service

	Connect to the Network Manager as a Client

	Concurrency and Asynchronous Programming
	Concurrency
	Asynchronous Programming
	Synchronous Example
	Asynchronous Example
	Synchronous vs Asynchronous comparison

	JSON Formats
	Client Format
	Service Format

	Connecting from a Terminal
	Python Examples
	Digital Multimeter
	Additional (Runnable) Examples
	Echo Service
	BasicMath Service
	MyArray Service
	Heartbeat Service

	Non-Python Examples
	LabVIEW
	Client
	Service
	Adder Service

	Starting a Service from another computer
	MSL-Network CLI Documentation
	msl.network.cli_certdump module
	msl.network.cli_certgen module
	msl.network.cli_delete module
	msl.network.cli_hostname module
	msl.network.cli_keygen module
	msl.network.cli_start module
	msl.network.cli_user module

	MSL-Network API Documentation
	Package Structure
	msl.network package
	msl.network.client module
	msl.network.constants module
	msl.network.cryptography module
	msl.network.database module
	msl.network.json module
	msl.network.manager module
	msl.network.network module
	msl.network.service module
	msl.network.ssh module
	msl.network.utils module

	License
	Developers
	Release Notes
	Version 1.1.0 (in development)
	Version 1.0.0 (2023-06-16)
	Version 0.5.0 (2020-03-18)
	Version 0.4.1 (2019-07-23)
	Version 0.4.0 (2019-04-16)
	Version 0.3.0 (2019-01-06)
	Version 0.2.0 (2018-08-24)
	Version 0.1.0 (2017-12-14)

	Index
	Python Module Index
	Index

