

MSL-Network

MSL-Network uses concurrency and asynchronous programming to transfer data across a network and it is composed
of three objects – a Network Manager, Clients and
Services.

The Network Manager allows for multiple Clients
and Services to connect to it and it links a Client's
request to the appropriate Service to execute the request and then the Network
Manager sends the response from the Service back
to the Client.

The Network Manager uses concurrency to handle requests from multiple
Clients such that multiple requests start, run and complete in overlapping time
periods and in no specific order. A Client can send requests synchronously or
asynchronously to the Network Manager for a Service
to execute. See Concurrency and Asynchronous Programming for more details.

JSON [https://www.json.org/] is used as the data format to exchange information between a
Client and a Service. As such, it is possible to
implement a Client or a Service in any programming
language to connect to the Network Manager. See the JSON Formats section
for an overview of the data format. One can also connect to the Network Manager
from a terminal to send requests, see Connecting from a Terminal for more details.

Contents

	Install

	Usage

	Concurrency & Asynchronous Programming

	JSON Formats

	Connecting from a Terminal

	Python Examples

	Non-Python Examples

	Starting a Service from another computer

	Command Line Interface

	API

	License

	Authors

	Release Notes

Index

	Module Index

Install MSL-Network

To install MSL-Network run:

pip install msl-network

Alternatively, using the MSL Package Manager [https://msl-package-manager.readthedocs.io/en/stable/] run:

msl install network

Compatibility

The Client and Service classes can be
implemented in any programming language (and also in unsupported Python versions). See the
JSON Formats section for how the Network Manager exchanges
information between a Client and a Service.

Dependencies

	Python 3.8+

	cryptography [https://cryptography.io/en/stable/]

	paramiko [https://www.paramiko.org/]

Optional packages that can be used for (de)serializing JSON [https://www.json.org/] data:

	UltraJSON [https://pypi.python.org/pypi/ujson/]

	RapidJSON [https://pypi.python.org/pypi/python-rapidjson/]

	simplejson [https://pypi.python.org/pypi/simplejson/]

	orjson [https://pypi.org/project/orjson/]

To use one of these external JSON [https://www.json.org/] packages, rather than Python’s builtin json [https://docs.python.org/3/library/json.html#module-json] module,
read the documentation of msl.network.json.Package.

Usage

Using MSL-Network requires a sequence of 3 steps:

	Start the Network Manager

	Start a Service on the Network Manager

	Connect to the Network Manager as a Client

Start the Network Manager

The first thing to do is to start the Network Manager.
There are 3 ways to do this.

	From a terminal run:

msl-network start

Running this command will automatically perform the following default actions:

	create a private 2048-bit, RSA [https://en.wikipedia.org/wiki/RSA_(cryptosystem)] key

	create a self-signed certificate using the private key

	create an SQLite [https://www.sqlite.org/] database to store information that is used by the Network
Manager

	start the Network Manager on the default port using the TLS [https://en.wikipedia.org/wiki/Transport_Layer_Security] protocol

	no authentication is required for Client's and
Service's to connect to the Manager

You can override the default actions, for example, use Elliptic-Curve Cryptography [https://en.wikipedia.org/wiki/Elliptic-curve_cryptography] rather than
RSA [https://en.wikipedia.org/wiki/RSA_(cryptosystem)] or only allow certain users to be able to connect to the Manager.
For more details refer to the help that is available from the command line

msl-network --help
msl-network start --help

	Call run_forever() in a script.

	Call run_services() in a script. This method also starts the
Service's immediately after the Manager starts.

Start a Service on the Network Manager

In order to create a new Service just create a class that is a subclass of
Service and call the
start() method.

BasicMath Service

For example, the BasicMath Service is a simple (and terribly inefficient)
Service that performs some basic math operations
and it is included with MSL-Network.

To start the BasicMath Service on the Manager
that is running on the same computer, run the following
command in a terminal

python -c "from msl.examples.network import BasicMath; BasicMath().start()"

Note

The reason for adding the time.sleep() [https://docs.python.org/3/library/time.html#time.sleep] functions in the BasicMath Service
will become evident when discussing Asynchronous Programming.

Connect to the Network Manager as a Client

Now that there is a BasicMath Service running on the Network Manager
(which are both running on the same computer that the Client will be), we can
connect() to the Network Manager

>>> from msl.network import connect
>>> cxn = connect(name='MyClient')

establish a link with the BasicMath Service

>>> bm = cxn.link('BasicMath')

and send a request to the BasicMath Service

>>> bm.add(1, 2)
3

See the Asynchronous Programming section for an example on how to send requests asynchronously.

To find out what devices are currently connected to the Manager, execute

>>> print(cxn.identities(as_string=True))
Manager[localhost:1875]
 attributes:
 identity() -> dict
 link(service: str) -> bool
 language: Python 3.9.7
 os: Windows 10 AMD64
Clients [1]:
 MyClient[localhost:63818]
 language: Python 3.9.7
 os: Windows 10 AMD64
Services [1]:
 BasicMath[localhost:63815]
 attributes:
 add(x: Union[int, float], y: Union[int, float]) -> Union[int, float]
 divide(x: Union[int, float], y: Union[int, float]) -> Union[int, float]
 ensure_positive(x: Union[int, float]) -> bool
 euler() -> 2.718281828459045
 multiply(x: Union[int, float], y: Union[int, float]) -> Union[int, float]
 pi() -> 3.141592653589793
 power(x: Union[int, float], n=2) -> Union[int, float]
 set_logging_level(level: Union[str, int]) -> bool
 subtract(x: Union[int, float], y: Union[int, float]) -> Union[int, float]
 language: Python 3.9.7
 max_clients: -1
 os: Windows 10 AMD64

If as_string=False, which is the default boolean value, then the returned value would be a
dict [https://docs.python.org/3/library/stdtypes.html#dict], rather than a str [https://docs.python.org/3/library/stdtypes.html#str], containing the same information.

To disconnect from the Manager, execute

>>> cxn.disconnect()

If you only wanted to connect to the BasicMath Service (and no other
Services on the Manager)
then you could create a LinkedClient

>>> from msl.network import LinkedClient
>>> bm = LinkedClient('BasicMath')
>>> bm.add(1, 2)
3
>>> bm.disconnect()

Concurrency and Asynchronous Programming

This section describes what is meant by Concurrency and Asynchronous Programming.
The presentation [https://youtu.be/M-UcUs7IMIM] by Robert Smallshire provides a nice overview of
concurrent programming and Python’s asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] module.

Concurrency

Concurrent programming uses a single thread to execute multiple tasks in an interleaved fashion. This is
different from parallel programming where multiple tasks can be executed at the same time.

[image: _images/concurrency_vs_parallelism.png]
 [https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/concurrency_vs_parallelism.png]The Network Manager uses concurrent programming. It runs in a single event loop
but it can handle multiple Clients and Services
connected to it simultaneously.

When a Client sends a request, the Manager
forwards the request to the appropriate Service and then the
Manager waits for another event to occur. Whether the event is a reply from a
Service, another request from a Client or a new device
wanting to connect to the Manager, the Manager simply
waits for I/O events and forwards an event to the appropriate network device when an event becomes available.

Since the Manager is running in a single thread it can only process one event at a
single instance in time. In typical use cases, this does not inhibit the performance of the
Manager since the Manager has the sole responsibility
of routing requests and replies through the network and it does not actually execute a request. There are
rare situations when an administrator is making a request for the Manager
to execute and in these situations the Manager would be executing the request, see
admin_request() for more details.

The Manager can become slow if it is (de)serializing a large
JSON [https://www.json.org/] object or sending a large amount of bytes through the network. For example,
if a reply from a Service is 1 GB in size and the network speed is 1 Gbps
(125 MB/s) then it will take at least 8 seconds for the data to be transmitted. During these 8 seconds the
Manager will be unresponsive to other events until it finishes sending all 1 GB of
data.

If the request for, or reply from, a Service consumes a lot of the processing time
of the Manager it is best to start another instance of the
Manager on another port to host the Service.

Asynchronous Programming

A Client can send requests either synchronously or asynchronously. Synchronous
requests are sent sequentially and the Client must wait to receive the reply before
proceeding to send the next request. These are blocking requests where the total execution time to receive all
replies is the combined sum of executing each request individually. Asynchronous requests do not wait for the
reply but immediately return a Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] instance, which is an object that is a
promise that a result (or exception) will be available later. These are non-blocking requests where the total
execution time to receive all replies is equal to the time it takes to execute the longest-running request.

[image: _images/sync_vs_async.png]
 [https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/sync_vs_async.png]
Synchronous Example

The following code illustrates how to send requests synchronously. Before you can run this example on your own
computer make sure to Start the Network Manager and start the BasicMath Service.

synchronous.py
#
This script takes about 21 seconds to run.

import time
from msl.network import connect

Connect to the Manager (that is running on the same computer)
cxn = connect()

Establish a link to the BasicMath Service
bm = cxn.link('BasicMath')

Get the start time before sending the requests
t0 = time.perf_counter()

Send all requests synchronously
The returned object is the result of each request
add = bm.add(1, 2)
subtract = bm.subtract(1, 2)
multiply = bm.multiply(1, 2)
divide = bm.divide(1, 2)
is_positive = bm.ensure_positive(1)
power = bm.power(2, 4)

Print the results
print(f'1+2= {add}')
print(f'1-2= {subtract}')
print(f'1*2= {multiply}')
print(f'1/2= {divide}')
print(f'is positive? {is_positive}')
print(f'2**4= {power}')

The total time that passed to receive all results
dt = time.perf_counter() - t0
print(f'Total execution time: {dt:.2f} seconds')

Disconnect from the Manager
cxn.disconnect()

The output of the synchronous.py program will be:

1+2= 3
1-2= -1
1*2= 2
1/2= 0.5
is positive? True
2**4= 16
Total execution time: 21.06 seconds

The Total execution time value will be slightly different for you, but the important thing to notice is that
executing all requests took about 21 seconds (i.e., 1+2+3+4+5+6=21 for the time.sleep() [https://docs.python.org/3/library/time.html#time.sleep] functions in the
BasicMath Service) and that the returned object from each request was the value of the result.

Asynchronous Example

The following code illustrates how to send requests asynchronously. Before you can run this example on your own
computer make sure to Start the Network Manager and start the BasicMath Service.

asynchronous.py
#
This script takes about 6 seconds to run.

import time
from msl.network import connect

Connect to the Manager (that is running on the same computer)
cxn = connect()

Establish a link to the BasicMath Service
bm = cxn.link('BasicMath')

Get the start time before sending the requests
t0 = time.perf_counter()

Create asynchronous requests by using the asynchronous=True keyword argument
The returned object is a Future object (not the result of each request)
add = bm.add(1, 2, asynchronous=True)
subtract = bm.subtract(1, 2, asynchronous=True)
multiply = bm.multiply(1, 2, asynchronous=True)
divide = bm.divide(1, 2, asynchronous=True)
is_positive = bm.ensure_positive(1, asynchronous=True)
power = bm.power(2, 4, asynchronous=True)

There are different ways to gather the results of the Future objects.
Calling result() on the Future will block until the result becomes
available (or until the request raised an exception). Note, the
result() method also supports a timeout argument. You can also
register callbacks to be called when a Future is done.

Print the results
print(f'1+2= {add.result()}')
print(f'1-2= {subtract.result()}')
print(f'1*2= {multiply.result()}')
print(f'1/2= {divide.result()}')
print(f'is positive? {is_positive.result()}')
print(f'2**4= {power.result()}')

The total time that passed to receive all results
dt = time.perf_counter() - t0
print(f'Total execution time: {dt:.2f} seconds')

Disconnect from the Manager
cxn.disconnect()

The output of the asynchronous.py program will be:

1+2= 3
1-2= -1
1*2= 2
1/2= 0.5
is positive? True
2**4= 16
Total execution time: 6.02 seconds

The Total execution time value will be slightly different for you, but the important thing to notice is that
executing all requests took about 6 seconds (i.e., max(1, 2, 3, 4, 5, 6) for the time.sleep() [https://docs.python.org/3/library/time.html#time.sleep] functions in the
BasicMath Service) and that the returned object from each request was a Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future]
instance which we needed to get the result() [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future.result] of.

Synchronous vs Asynchronous comparison

Comparing the total execution time for the Synchronous Example and the Asynchronous Example we see that the asynchronous
program is 3.5 times faster. Choosing whether to send a request synchronously or asynchronously is performed by passing
in an asynchronous=False or asynchronous=True keyword argument, respectively. Also, in the synchronous example
when a request is sent the object that is returned is the result of the method from the BasicMath Service,
whereas in the asynchronous example the returned value is a Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] object that
provides the result later.

	
	Synchronous

	Asynchronous

	Total execution time

	21 seconds

	6 seconds

	Keyword argument to invoke

	asynchronous=False (default)

	asynchronous=True

	Returned value from request

	the result

	a Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] object

JSON Formats

Information is exchanged between a Manager, a Client
and a Service using JSON [https://www.json.org/] as the data format. The information is
serialized [https://en.wikipedia.org/wiki/Serialization] to bytes and terminated with "\r\n" (a carriage return and a line feed).

A Client or a Service can be written in
any programming language, but the JSON [https://www.json.org/] data format must adhere to the specific requirements specified
below. The Client and Service must also
check for the "\r\n" (or just the "\n") byte sequence in each network packet that it receives
in order to ensure that all bytes have been received or to check if multiple requests/responses are
contained within the same network packet.

Client Format

A Client must send a request with the following JSON [https://www.json.org/] representation:

{
 "args": array of objects (arguments to be passed to the method of the Manager or Service)
 "attribute": string (the name of a method or variable to access from the Manager or Service)
 "error": false
 "kwargs": name-value pairs (keyword arguments to be passed to the method of the Manager or Service)
 "service": string (the name of the Service, or "Manager" if the request is for the Manager)
 "uid": string (a unique identifier of the request)
}

The unique identifier (uid) is only used by the Client. The
Manager simply forwards the unique identifier to the
Service which just includes the unique identifier in its reply.
Therefore, the value can be anything that you want it to be (provided that it does not contain the
"\r\n" sequence and it cannot be equal to "notification" since this is a reserved identifier).
The unique identifier is useful when keeping track of which reply corresponds with which request when
executing asynchronous requests.

A Client will also have to send a reply to a Manager
during the connection procedure (i.e., when sending the identity of the
Client and possibly providing a username and/or password if requested by the
Manager).

To send a reply to the Manager use the following JSON [https://www.json.org/] representation

{
 "error": false (can be omitted)
 "requester": string (can be omitted)
 "result": object (the reply from the Client)
 "uid": string (can be omitted)
}

You only need to include the “result” name-value pair in the reply. The “error”, “requester” and “uid”
name-value pairs can be omitted, or anything you want, since they are not used by the
Manager to process the reply from a Client.
However, including these additional name-value pairs provides symmetry with the way a
Service sends a reply to a Manager
when there is no error.

A Client will receive a reply that is in 1 of 3 JSON [https://www.json.org/] representations.

Before a Client successfully connects to the Manager
the Manager will request information about the connecting device (such as the
identity of the device and it may check the authorization details of the
connecting device).

If the bytes received represent a request from the Network Manager then the JSON [https://www.json.org/] object
will be:

{
 "args": array of objects (arguments to be passed to the method of the Client)
 "attribute": string (the name of a method to call from the Client)
 "error": false
 "kwargs": name-value pairs (keyword arguments to be passed to the method of the Client)
 "requester": string (the address of the Network Manager)
 "uid": string (an empty string)
}

If the bytes received represent a reply from a Service then the JSON [https://www.json.org/] object will be:

{
 "error": false
 "requester": string (the address of the Client that made the request)
 "result": object (the reply from the Service)
 "uid": string (the unique identifier of the request)
}

If the bytes received represent an error then the JSON [https://www.json.org/] object will be:

{
 "error": true
 "message": string (a short description of the error)
 "requester": string (the address of the device that made the request)
 "result": null
 "traceback": array of strings (a detailed stack trace of the error)
 "uid": string
}

A Service can also emit a notification to all
Client's that are Linked with the
Service. Each Client will
receive a notification that has the following JSON [https://www.json.org/] representation

{
 "error": false
 "result": array (a 2-element list of [args, kwargs], e.g., [[1, 2, 3], {"x": 4, "y": 5}])
 "service": string (the name of the Service that emitted the notification)
 "uid": "notification"
}

Service Format

A Service will receive data in 1 of 2 JSON [https://www.json.org/] representations.

If the bytes received represent an error from the Network Manager then the JSON [https://www.json.org/]
object will be:

{
 "error": true
 "message": string (a short description of the error)
 "requester": string (the address of the Manager)
 "result": null
 "traceback": array of strings (a detailed stack trace of the error)
 "uid": string (an empty string)
}

If the bytes received represent a request from the Manager or a
Client then the JSON [https://www.json.org/] object will be:

{
 "args": array of objects (arguments to be passed to the method of the Service)
 "attribute": string (the name of a method or variable to access from the Service)
 "error": false
 "kwargs": name-value pairs (keyword arguments to be passed to the method of the Service)
 "requester": string (the address of the device that made the request)
 "uid": string (the unique identifier of the request)
}

A Service will send a response in 1 of 2 JSON [https://www.json.org/] representations.

If the Service raised an exception then the JSON [https://www.json.org/] object will be:

{
 "error": true
 "message": string (a short description of the error)
 "requester": string (the address of the device that made the request)
 "result": null
 "traceback": array of strings (a detailed stack trace of the error)
 "uid": string (the unique identifier of the request)
}

If the Service successfully executed the request then the JSON [https://www.json.org/] object will be:

{
 "error": false
 "requester": string (the address of the device that made the request)
 "result": object (the reply from the Service)
 "uid": string (the unique identifier of the request)
}

A Service can also emit a notification to all
Client's that are Linked with the
Service. A Service must
emit a notification that has the following JSON [https://www.json.org/] representation

{
 "error": false
 "result": array (a 2-element list of [args, kwargs], e.g., [[1, 2, 3], {"x": 4, "y": 5}])
 "service": string (the name of the Service that emitted the notification)
 "uid": "notification"
}

Connecting from a Terminal

One can connect to the Network Manager from a terminal,
e.g., using openssl s_client [https://www.openssl.org/docs/manmaster/man1/s_client.html], to manually send requests to the Network
Manager. So that you do not have to enter a request in the
very-specific JSON [https://www.json.org/] representation of the Client Format, the following syntax
can be used instead.

Connecting from a terminal is only convenient when connecting as a
Client. A Service must enter
the full JSON [https://www.json.org/] representation of the Service Format when it sends a response.

Some tips for connecting as a Client:

	To identify as a Client enter

client

	To identify as a Client with the name My Name enter

client My Name

	To request something from the Network Manager use the following format

Manager <attribute> [<arguments>, [<keyword_arguments>]]

For example, to request the identity of the Network
Manager enter

Manager identity

or, as a shortcut for requesting the identity of
the Manager, you only need to enter

identity

To check if a user with the name n.bohr exists in the database of registered users enter

Manager users_table.is_user_registered n.bohr

Note

Most requests that are for the Network Manager to
execute require that the request comes from a Client
that is connected to the Network Manager as an administrator.
Your login credentials will be checked (requested from you) before the Network
Manager executes the request. See the user command in
MSL-Network CLI Documentation for more details on how to become an administrator.

	To request something from a Service use the following format

<service> <attribute> [<arguments>, [<keyword_arguments>]]

Attention

Although you can send requests to a Service in the following manner
there is no way to block the request if the Service has already met the
restriction for the maximum number of Client's that can be linked with
the Service to send requests to it. Therefore, you should only do the
following if you are certain that the Service has not reached its maximum
Client limit. To test if this Client
limit has been reached enter link <service>, for example, link BasicMath and see if you get
a PermissionError in the response before you proceed to send requests to the
Service.

For example, to request the addition of two numbers from the BasicMath Service enter

BasicMath add 4 10

or

BasicMath add x=4 y=10

To request the concatenation of two strings from a ModifyString.concat(s1, s2)
Service, but with the ModifyString
Service being named String Editor on the Network
Manager enter

"String Editor" concat s1="first string" s2="second string"

	To disconnect from the Network Manager enter

disconnect

or

exit

Python Examples

The following examples illustrate some ideas on how one could use MSL-Network.

	Digital Multimeter

	Additional (Runnable) Examples

	RPi-SmartGadget [https://github.com/MSLNZ/rpi-smartgadget] – Uses a Raspberry Pi to communicate with a Sensirion SHTxx sensor.

Digital Multimeter

This example shows how a digital multimeter that has a non-Ethernet interface, e.g., GPIB or RS232, can be
controlled from any computer that is on the network. It uses the MSL-Equipment [https://msl-equipment.readthedocs.io/en/latest/] package to connect to the digital
multimeter and MSL-Network to enable the digital multimeter as a Service on the
network. This example is included with MSL-Network when it is installed, but since it requires additional hardware
(a digital multimeter) it can only be run if the hardware is attached to the computer.

The first task to do is to Start the Network Manager on the same computer that the digital multimeter is
physically connected to (via a GPIB cable or a DB9 cable). Next, on the same computer, copy and paste the
following script to a file, edit the equipment record used by MSL-Equipment [https://msl-equipment.readthedocs.io/en/latest/] for the information relevant
to your DMM (e.g., the COM#, GPIB address) and then run the script to start the digital multimeter
Service.

"""
Example showing how a digital multimeter that has a non-Ethernet interface
(e.g., GPIB or RS232) can be controlled from any computer that is on the network.
"""
from msl.equipment import ConnectionRecord
from msl.equipment import EquipmentRecord

from msl.network import Service

class DigitalMultimeter(Service):

 def __init__(self):
 """Initialize the communication with the digital multimeter.

 This script must be run on a computer that the multimeter is
 physically connected to.
 """

 # Initialize the Service. Set the name of the DigitalMultimeter Service,
 # as it will appear on the Network Manager, to be 'Hewlett Packard 34401A'
 # and specify that only 1 Client on the network can control the digital
 # multimeter at any instance in time. Once the Client disconnects from
 # the Network Manager another Client would then be able to link with the
 # DigitalMultimeter Service to control the digital multimeter.
 super().__init__(name='Hewlett Packard 34401A', max_clients=1)

 # Connect to the digital multimeter
 # (see MSL-Equipment for more details)
 record = EquipmentRecord(
 manufacturer='HP',
 model='34401A',
 connection=ConnectionRecord(
 address='COM4', # RS232 interface
 backend='MSL',
)
)
 self._dmm = record.connect()

 def write(self, command: str) -> None:
 """Write a command to the digital multimeter.

 Parameters

 command : str
 The command to write.
 """
 self._dmm.write(command)

 def read(self) -> str:
 """Read the response from the digital multimeter.

 Returns

 str
 The response.
 """
 return self._dmm.read().rstrip()

 def query(self, command: str) -> str:
 """Query the digital multimeter.

 Performs a write then a read.

 Parameters

 command : str
 The command to write.

 Returns

 str
 The response.
 """
 return self._dmm.query(command).rstrip()

if __name__ == '__main__':
 # Initialize and start the DigitalMultimeter Service
 dmm_service = DigitalMultimeter()
 dmm_service.start()

With the DigitalMultimeter Service running you can execute the following
commands on another computer that is on the same network as the Manager
in order to interact with the digital multimeter from the remote computer.

Connect to the Manager by specifying the hostname (or IP address) of the computer
that the Manager is running on

>>> from msl.network import connect
>>> cxn = connect(host='the hostname or IP address of the computer that the Manager is running on')

Since the name of the DigitalMultimeter Service was specified to be
'Hewlett Packard 34401A', we must link with the correct name of the Service

>>> dmm = cxn.link('Hewlett Packard 34401A')

Tip

The process of establishing a connection to a Manager
and linking with a Service can also be done in a single
line. A LinkedClient exists for this purpose. This can be
useful if you only want to link with a single Service.

>>> from msl.network import LinkedClient
>>> dmm = LinkedClient('Hewlett Packard 34401A', host='hostname or IP address of the Manager')

Now we can send write, read or query commands to the digital multimeter

>>> dmm.query('MEASURE:VOLTAGE:DC?')
'-6.23954727E-02'

When you are finished sending requests to the Manager you should disconnect
from the Manager. This will allow other Client's
to be able to control the digital multimeter.

>>> cxn.disconnect()

Additional (Runnable) Examples

The following Service's are included with MSL-Network. To start
any of these Service's, first make sure that you Start the Network Manager,
and then run the following command in a terminal. For this example, the Echo Service
is running

python -c "from msl.examples.network import Echo; Echo().start()"

You can then send requests to the Echo Service

>>> from msl.network import connect
>>> cxn = connect()
>>> e = cxn.link('Echo')
>>> e.echo('hello')
[['hello'], {}]
>>> e.echo('world!', x=7, array=list(range(10)))
[['world!'], {'x': 7, 'array': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}]
>>> cxn.disconnect()

Echo Service

"""
Example echo Service.

Before running this module ensure that the Network Manager is running on the
same computer, i.e., run the following command in a terminal

msl-network start

then run this module to connect to the Manager as a Service.

After the Echo Service starts you can connect to the Manager as a Client,
link with the Echo Service and then send requests, e.g.,

from msl.network import connect
cxn = connect()
e = cxn.link('Echo')
args, kwargs = e.echo(1, 2, x='hello', y='world')
"""
from msl.network import Service

class Echo(Service):

 @staticmethod
 def echo(*args, **kwargs):
 return args, kwargs

if __name__ == '__main__':
 service = Echo()
 service.start()

BasicMath Service

"""
Example Service for illustrating the difference between synchronous and
asynchronous requests.

Before running this module ensure that the Network Manager is running on the
same computer, i.e., run the following command in a terminal

msl-network start

then run this module to connect to the Manager as a Service.

After the BasicMath Service starts you can connect to the Manager as a Client,
link with the BasicMath Service and then send requests, e.g.,

from msl.network import connect
cxn = connect()
bm = cxn.link('BasicMath')
value = bm.add(1, 2)
"""
import time
from typing import Union

from msl.network import Service

number = Union[int, float]

class BasicMath(Service):

 euler = 2.718281828459045

 @property
 def pi(self) -> float:
 return 3.141592653589793

 def add(self, x: number, y: number) -> number:
 time.sleep(1)
 return x + y

 def subtract(self, x: number, y: number) -> number:
 time.sleep(2)
 return x - y

 def multiply(self, x: number, y: number) -> number:
 time.sleep(3)
 return x * y

 def divide(self, x: number, y: number) -> number:
 time.sleep(4)
 return x / float(y)

 def ensure_positive(self, x: number) -> bool:
 time.sleep(5)
 if x < 0:
 raise ValueError('The value is < 0')
 return True

 def power(self, x: number, n=2) -> number:
 time.sleep(6)
 return x ** n

if __name__ == '__main__':
 import logging

 # Optional: allows for "info" log messages to be visible on the Service
 logging.basicConfig(
 level=logging.INFO,
 format='%(asctime)s [%(levelname)-5s] %(message)s',
)

 service = BasicMath()
 service.start()

MyArray Service

"""
Example Service for generating and manipulating arrays. This example
illustrates how to interface a LabVIEW program with MSL-Network.

Before running this module ensure that the Network Manager is running on the
same computer, i.e., run the following command in a terminal

msl-network start

then run this module to connect to the Manager as a Service.

After the MyArray Service starts you can connect to the Manager as a Client,
link with the MyArray Service and then send requests, e.g.,

from msl.network import connect
cxn = connect()
my_array = cxn.link('MyArray')
linspace = my_array.linspace(0, 1)
"""
from typing import List, Union

from msl.network import Service

number = Union[int, float]
Vector = List[float]

class MyArray(Service):

 @staticmethod
 def linspace(start: number, stop: number, n=100) -> List[float]:
 """Return evenly-spaced numbers over a specified interval."""
 dx = (stop-start)/float(n-1)
 return [start+i*dx for i in range(int(n))]

 @staticmethod
 def scalar_multiply(scalar: number, data: Vector) -> Vector:
 """Multiply every element in `data` by a number."""
 return [element*scalar for element in data]

if __name__ == '__main__':
 service = MyArray()
 service.start()

Heartbeat Service

"""
Example Service that emits notifications to all linked Clients. This example
also shows how to add a task to the event loop of the Service.

Before running this module ensure that the Network Manager is running on the
same computer, i.e., run the following command in a terminal

msl-network start

then run this module to connect to the Manager as a Service.

After the Heartbeat Service starts you can connect to the Manager as a Client,
link with the Heartbeat Service, handle notifications from the Service and also
send requests, e.g.,

import types
from msl.network import connect

def print_notification(self, *args, **kwargs):
 print(f'The {self.service_name} Service emitted', args, kwargs)

cxn = connect()
heartbeat = cxn.link('Heartbeat')
heartbeat.notification_handler = types.MethodType(print_notification, heartbeat)

some time later

heartbeat.reset()
"""
import asyncio

from msl.network import Service

class Heartbeat(Service):

 def __init__(self):
 """A Service that emits a counter value."""
 super(Heartbeat, self).__init__()
 self._sleep = 1.0
 self._counter = 0
 self._alive = True

 def kill(self) -> None:
 """Stop emitting the heartbeat."""
 self._alive = False

 def reset(self) -> None:
 """Reset the heartbeat counter."""
 self._counter = 0

 def set_heart_rate(self, beats_per_second: int) -> None:
 """Change the rate that the value of the counter is emitted."""
 self._sleep = 1.0 / float(beats_per_second)

 def shutdown_handler(self) -> None:
 """Called when the connection to the Manager is closed."""
 self._alive = False

 async def emit(self) -> None:
 """This coroutine is also run in the event loop."""
 while self._alive:
 self.emit_notification(self._counter)
 self._counter += 1
 await asyncio.sleep(self._sleep)

if __name__ == '__main__':
 # Initialize the Service
 service = Heartbeat()

 # Add a task to the event loop of the Service
 service.add_tasks(service.emit())

 # Start the Service
 service.start()

Non-Python Examples

Since information is sent using the JSON format across the network the
Client and Service classes can be
implemented in any programming language.

	LabVIEW
	Client

	Service

LabVIEW

The following illustrates how to use LabVIEW to send requests as a Client and receive requests as a Service.
The source code is available to download from the repository [https://github.com/MSLNZ/msl-network/tree/main/external/labview]. The VI’s have been saved with
LabVIEW 2010. The LabVIEW code uses the i3 JSON Toolkit [https://forums.ni.com/t5/JSON-Toolkit-for-LabVIEW/gp-p/8520], which is bundled with the code in the repository [https://github.com/MSLNZ/msl-network/tree/main/external/labview],
to (de)serialize JSON [https://www.json.org/] data.

Attention

The asynchronous aspect of MSL-Network is not implemented in the VI’s.

The first step is to Start the Network Manager. Since LabVIEW does not natively support the TLS [https://en.wikipedia.org/wiki/Transport_Layer_Security] protocol you must
start the Network Manager with the --disable-tls flag, and, to simplify the
examples below, do not use any authentication, i.e., run

msl-network start --disable-tls

The hostname and port number that the Network Manager is running on will
be displayed. These values will need to be entered in the front panel of the VI’s shown below.

... [INFO] msl.network - Network Manager running on <hostname>:<port> (TLS DISABLED)

Client

The following shows how to send a request to the MyArray Service. Before running
MyArray_client.vi make sure that the MyArray Service is running on the Network
Manager

python -c "from msl.examples.network import MyArray; MyArray().start(disable_tls=True)"

On the front panel of MyArray_client.vi you need to enter the hostname and port values that the
Network Manager is running on (see above). The Service name and function name values
on the front panel do not need to be changed for this example. By changing the values of the start, stop and n
parameters the result array will be populated when you run the VI.

[image: _images/labview_client_fp.png]
 [https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_client_fp.png][image: _images/labview_client_bd.png]
 [https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_client_bd.png]

Service

The service_template.vi file is a template to use for creating a new Service. The controls on the front panel
of the VI are as follows:

	Network Manager IP Address or Hostname and Network Manager port: The hostname and port values that
the Network Manager is running on (see above).

	timeout ms: The maximum number of milliseconds to wait to connect to the Network
Manager.

	username and password: Since the Network Manager can be started using different
types of authentication for a Client or Service to be allowed to connect to it you can specify the values here.
If the username and/or password values are not specified and the Network Manager
requires these values for the connection then LabVIEW will prompt you for these values.

	Service Name: The name of your Service as it will appear on the Network Manager.

	function name and function signature: These are used to let a Client know what functions your Service provides,
what input parameters are needed for each function and what each function returns. For more details see the
comments in the Service -> attributes section in the identity() method.

[image: _images/labview_service_template_fp.png]
 [https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_service_template_fp.png]The case sequence on the block diagram needs to be updated for each function that your Service provides

[image: _images/labview_service_template_bd.png]
 [https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_service_template_bd.png]
Adder Service

As a particular example of implementing a Service in LabVIEW the following VI shows an Adder Service. This Service
has a function called add_numbers that takes two numbers as inputs, x and y, and returns the sum.

[image: _images/labview_service_fp.png]
 [https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_service_fp.png]Note that the name of the add_numbers function is specified on the front panel (which lets Clients know that
this function exists) and in the case structure on the block diagram (which processes a Client’s request).

[image: _images/labview_service_bd.png]
 [https://raw.githubusercontent.com/MSLNZ/msl-network/main/docs/_static/labview_service_bd.png]Run Adder_service.vi to start the Adder Service and then on another computer you can send a request
to the Adder Service

>>> from msl.network import connect
>>> cxn = connect(host='the hostname or IP address of the Manager', disable_tls=True)

establish a link with the Adder Service

>>> adder = cxn.link('Adder')

and send a request to the Adder Service

>>> adder.add_numbers(x=1.2, y=3.4)
4.6

Disconnect from the Network Manager when you are finished

>>> cxn.disconnect()

Starting a Service from another computer

Suppose that you wanted to start a Service on a remote computer,
for example, a Raspberry Pi, from another computer that is on the same network as the Pi.

Your package has the following structure:

mypackage/
 mypackage/
 __init__.py
 my_client.py
 rpi_service.py
 setup.py

with setup.py as

from setuptools import setup

setup(
 name='mypackage',
 version='0.1.0',
 packages=['mypackage'],
 install_requires=['msl-network'],
 entry_points={
 'console_scripts': [
 'mypackage = mypackage:start_service_on_rpi',
],
 },
)

__init__.py as

from msl.network import run_services, ssh, LinkedClient

from .rpi_service import RPiService
from .my_client import MyClient

def connect(*, host='raspberrypi', rpi_password=None, timeout=10, **kwargs):
 # you will need to update the `console_script_path` value below
 # when you implement the code in your own program since this is a unique path
 # that is defined as the path where the mypackage executable is located on the Pi
 console_script_path = '/home/pi/.local/bin/mypackage'
 ssh.start_manager(host, console_script_path, ssh_username='pi',
 ssh_password=rpi_password, timeout=timeout, **kwargs)

 # create a Client that is linked with a Service of your choice
 # in this case it is the RPiService
 kwargs['host'] = host
 return MyClient('RPiService', **kwargs)

def start_service_on_rpi():
 # this function gets called from your `console_scripts` definition in setup.py
 kwargs = ssh.parse_console_script_kwargs()
 if kwargs.get('auth_login', False) and ('username' not in kwargs or 'password' not in kwargs):
 raise ValueError(
 'The Manager is using a login for authentication but RPiService '
 'does not know the username and password to use to connect to the Manager'
)
 run_services(RPiService(), **kwargs)

rpi_service.py as

from msl.network import Service

class RPiService(Service):

 def __init__(self):
 super(RPiService, self).__init__()

 def shutdown_service(self, *args, **kwargs):
 # Implementing this method allows for the RPiService to be
 # shut down remotely by MyClient. MyClient can also include
 # *args and **kwargs to the shutdown_service() method.
 # If there is nothing that needs to be performed before the
 # RPiService shuts down then just return None.
 # After the shutdown_service() method returns, the RPiService
 # will automatically wait for all Futures that it is currently
 # executing to either finish or to be cancelled before the
 # RPiService disconnects from the Network Manager.
 pass

 def add_numbers(self, a, b, c, d):
 return a + b + c + d

 def power(self, a, n=2):
 return a ** n

and my_client.py as

from msl.network import LinkedClient

class MyClient(LinkedClient):

 def __init__(self, service_name, **kwargs):
 super(MyClient, self).__init__(service_name, **kwargs)

 def disconnect(self):
 # We override the `disconnect` method because we want to shut
 # down the RPiService and the Network Manager when MyClient
 # disconnects from the Raspberry Pi. Not every Service will
 # allow a Client to shut it down. However, we have decided to
 # design mypackage in a particular way that MyClient is
 # intended to be the only Client connected to the Manager and
 # when MyClient is done communicating with the RPiService then
 # both the Manager and the Service shut down. The Client can
 # also include *args and **kwargs in the shutdown_service()
 # request, but we don't use them in this example.
 self.shutdown_service()
 super(MyClient, self).disconnect()

 def service_error_handler(self):
 # We can override this method to handle the situation if
 # there is an error on the Service. In general, if a Service
 # raises an exception you wouldn't want it to shut
 # down because you would have to manually restart it. Especially
 # if other Clients are requesting information from that Service.
 # However, for mypackage we want everything to shut down
 # (RPiService, MyClient and the Manager) when any one of them
 # raises an exception.
 self.disconnect()

To create a source distribution of mypackage run the following in the root folder of your
package directory

python setup.py sdist

This will create a file dist/mypackage-0.1.0.tar.gz. Copy this file to the Raspberry Pi.

The following libraries are needed to install the cryptography [https://cryptography.io/en/latest/] package from source on the Raspberry Pi.

sudo apt install build-essential libssl-dev libffi-dev python3-dev

Note

It is recommended to install mypackage in a virtual environment [https://docs.python.org/3/tutorial/venv.html] if you are familiar
with them. However, in what follows we show how to install mypackage without using a
virtual environment [https://docs.python.org/3/tutorial/venv.html] for simplicity.

Install mypackage-0.1.0.tar.gz on the Raspberry Pi using

pip3 install mypackage-0.1.0.tar.gz

In addition, install mypackage-0.1.0.tar.gz on another computer.

Finally, on the ‘another’ computer you would perform the following. This would
start the Network Manager on the Raspberry Pi, start
the RPiService, connect to the Manager
and link() with RPiService.

You may have to change the value of host for your Raspberry Pi. The following example
assumes that the hostname of the Raspberry Pi is raspberrypi.

>>> from mypackage import connect
>>> rpi = connect(host='raspberrypi')
>>> rpi.add_numbers(1, 2, 3, 4)
10
>>> rpi.power(4)
16
>>> rpi.power(5, n=3)
125

When you are done sending requests to RPiService you call the disconnect method which
will shut down the RPiService and the Network Manager that are
running on the Raspberry Pi and disconnect MyClient from the Pi.

>>> rpi.disconnect()

Tip

Suppose that you get the following error

>>> rpi = connect(host='raspberrypi')
...
[Errno 98] error while attempting to bind on address ('::', 1875, 0, 0): address already in use

This means that there is probably a Manager already running
on the Raspberry Pi at port 1875. You have four options to solve this problem using MSL-Network.

	Start another Manager on a different port

>>> rpi = connect(host='raspberrypi', port=1876)

	Connect to the Manager and shut it down gracefully;
however, this requires that you are an administrator of that Manager.
See the user command in MSL-Network CLI Documentation for more details on how to create a user that
is an administrator.

>>> from msl.network import connect, constants
>>> cxn = connect(host='raspberrypi')
>>> cxn.admin_request(constants.SHUTDOWN_MANAGER)

	Kill the Manager

>>> from msl.network import ssh
>>> ssh_client = ssh.connect('pi@raspberrypi')
>>> out = ssh.exec_command(ssh_client, 'ps aux | grep mypackage')
>>> print('\n'.join(out))
pi 1367 0.1 2.2 63164 21380 pts/0 Sl+ 12:21 0:01 /usr/bin/python3 .local/bin/mypackage
pi 4341 0.0 0.2 4588 2512 ? Ss 12:30 0:00 bash -c ps aux | grep mypackage
pi 4343 0.0 0.0 4368 540 ? S 12:30 0:00 grep mypackage
>>> ssh.exec_command(ssh_client, 'sudo kill -9 1367')
[]
>>> ssh_client.close()

	Reboot the remote computer

>>> from msl.network import ssh
>>> ssh_client = ssh.connect('pi@raspberrypi')
>>> ssh.exec_command(ssh_client, 'sudo reboot')
[]
>>> ssh_client.close()

MSL-Network CLI Documentation

The follow commands summarize the various ways to use MSL-Network
from a terminal.

	certdump
	add_parser_certdump()

	execute()

	certgen
	add_parser_certgen()

	execute()

	delete
	add_parser_delete()

	execute()

	hostname
	add_parser_hostname()

	execute()

	keygen
	add_parser_keygen()

	execute()

	start
	add_parser_start()

	execute()

	user
	add_parser_user()

	execute()

For example, run

msl-network start --help

from a terminal to print the help for the start command.

msl.network.cli_certdump module

Command line interface for the certdump command.

To see the help documentation, run the following command in a terminal:

msl-network certdump --help

Dumps the details of a PEM certificate.

The certdump command is similar to the openssl command to
get the details of a certificate:

openssl x509 -in certificate.crt -text -noout

Examples:

dump the details to the terminal
msl-network certdump /path/to/cert.pem

dump the details to a file
msl-network certdump /path/to/cert.pem --out dump.txt

See Also:

msl-network certgen

	
msl.network.cli_certdump.add_parser_certdump(parser)

	Add the certdump command to the parser.

	
msl.network.cli_certdump.execute(args)

	Executes the certdump command.

msl.network.cli_certgen module

Command line interface for the certgen command.

To see the help documentation, run the following command in a terminal:

msl-network certgen --help

Generate a self-signed PEM certificate.

The certificate uses the hostname of the computer that this command was
executed on as the Common Name and as the Issuer Name.

The certgen command is similar to the openssl command to generate a
self-signed certificate from a pre-existing private key:

openssl req -key private.key -new -x509 -days 365 --out certificate.crt

Examples:

create a default certificate using the default private key
and save it to the default directory
msl-network certgen

create a certificate using the specified key and
save the certificate to the specified file
msl-network certgen --key-file /path/to/key.pem /path/to/cert.pem

See Also:

msl-network keygen
msl-network certdump

	
msl.network.cli_certgen.add_parser_certgen(parser)

	Add the certgen command to the parser.

	
msl.network.cli_certgen.execute(args)

	Executes the certgen command.

msl.network.cli_delete module

Command line interface for the delete command.

New in version 1.0.

To see the help documentation, run the following command in a terminal:

msl-network delete --help

Delete files that are created by MSL-Network.

Can remove the database, log files, certificates and/or keys.

Examples:

delete all files that are created by MSL-Network
msl-network delete --all

delete all log files
msl-network delete --logs

	
msl.network.cli_delete.add_parser_delete(parser)

	Add the delete command to the parser.

	
msl.network.cli_delete.execute(args)

	Executes the delete command.

msl.network.cli_hostname module

Command line interface for the hostname command.

To see the help documentation, run the following command in a terminal:

msl-network hostname --help

Add/remove hostname(s) into/from the table in the database.

The Network Manager can be started with the option to use trusted devices
(based on the hostname of the connecting device) as the authorisation check
for a Client or Service to be able to connect to the Network Manager.

Each hostname in the table is considered as a trusted device and therefore
the device can connect to the Network Manager.

To use trusted hostnames as the authentication check, start the Network
Manager with the --auth-hostname flag:

msl-network start --auth-hostname

Examples:

add 'TheHostname' as a trusted device in the default database
msl-network hostname add TheHostname

add 'TheHostname' and 'OtherHostname' as trusted devices
msl-network hostname add TheHostname OtherHostname

remove 'OtherHostname' from the database of trusted devices
msl-network hostname remove OtherHostname

add 'TheHostname' to a specific database
msl-network hostname add TheHostname --database /path/to/database.db

list all trusted hostnames
msl-network hostname list

	
msl.network.cli_hostname.add_parser_hostname(parser)

	Add the hostname command to the parser.

	
msl.network.cli_hostname.execute(args)

	Executes the hostname command.

msl.network.cli_keygen module

Command line interface for the keygen command.

To see the help documentation, run the following command in a terminal:

msl-network keygen --help

Generate a private key to digitally sign a PEM certificate.

The keygen command is similar to the openssl command:

openssl req -newkey rsa:2048 -nodes -keyout key.pem

Examples:

create a default private key (RSA, 2048-bit, unencrypted)
and save it to the default directory
msl-network keygen

create a 3072-bit, encrypted private key using the DSA algorithm
msl-network keygen dsa --size 3072 --password WhatEVER you wAnt!

See Also:

msl-network certgen

	
msl.network.cli_keygen.add_parser_keygen(parser)

	Add the keygen command to the parser.

	
msl.network.cli_keygen.execute(args)

	Executes the keygen command.

msl.network.cli_start module

Command line interface for the start command.

To see the help documentation, run the following command in a terminal:

msl-network start --help

Start the MSL Network Manager.

Examples:

start the Network Manager using the default settings
msl-network start

start the Network Manager on port 8326
msl-network start --port 8326

require an authentication password for Clients and Services
to be able to connect to the Network Manager
msl-network start --auth-password abc 123

use a specific certificate and key for the secure TLS protocol
msl-network start --cert-file /path/to/cert.pem --key-file /path/to/key.pem

require that a valid username and password are specified for
Clients and Services to be able to connect to the Network Manager
msl-network start --auth-login

See Also:

msl-network certgen
msl-network keygen
msl-network hostname
msl-network user

	
msl.network.cli_start.add_parser_start(parser)

	Add the start command to the parser.

	
msl.network.cli_start.execute(args)

	Executes the start command.

msl.network.cli_user module

Command line interface for the user command.

To see the help documentation, run the following command in a terminal:

msl-network user --help

Add/remove a user into/from a database.

The Network Manager can be started with the option to use a user’s login
credentials as the authorisation check for a Client or Service to be able
to connect to the Network Manager.

To use the login credentials as the authentication check, start the Network
Manager with the --auth-login flag:

msl-network start --auth-login

Examples:

add 'j.doe' to the default database
msl-network user add j.doe --password a good password

add 'a.smith' as an administrator to the database
msl-network user add a.smith --password !PaSsWoRd* --admin

update 'j.doe' to be an administrator
msl-network user update j.doe --admin

update 'a.smith' to not be an administrator
msl-network user update a.smith

update the password for 'j.doe' using a password in a file
msl-network user update j.doe --password /path/to/my/password.txt

remove 'j.doe' from the default database
msl-network user remove j.doe

add 'j.doe' to a specific database
msl-network user add j.doe --password The Password To Use --database /path/to/database.db

list all users in the database
msl-network user list

	
msl.network.cli_user.add_parser_user(parser)

	Add the user command to the parser.

	
msl.network.cli_user.execute(args)

	Executes the user command.

MSL-Network API Documentation

MSL-Network has very little functions or classes that need to be accessed in a user’s application.

Typically, only the Service class needs to be subclassed and the
connect() function will be called to connect to the Network
Manager for most applications using MSL-Network.

The msl.network.ssh module provides some functions for using SSH [https://www.ssh.com/ssh/]
to connect to a remote computer. Starting a Service from another computer shows an example Python package that can
automatically start a Network Manager and a
Service on a Raspberry Pi from another computer.

The process of establishing a connection to a Manager and linking
with a particular Service can be achieved by creating a
LinkedClient. This can be useful if you only want to link with a
single Service on a Manager.

Package Structure

	msl.network
	version_info

	msl.network.client
	connect()

	filter_client_connect_kwargs()

	Client
	Client.admin_request()

	Client.disconnect()

	Client.is_connected()

	Client.link()

	Client.identities()

	Client.spawn()

	Client.unlink()

	Link
	Link.acquire_lock()

	Link.release_lock()

	Link.service_address

	Link.service_attributes

	Link.service_language

	Link.service_max_clients

	Link.service_name

	Link.service_os

	Link.disconnect()

	Link.notification_handler()

	Link.shutdown_service()

	Link.unlink()

	LinkedClient
	LinkedClient.acquire_lock()

	LinkedClient.admin_request()

	LinkedClient.disconnect()

	LinkedClient.identity()

	LinkedClient.identities()

	LinkedClient.is_connected()

	LinkedClient.notification_handler()

	LinkedClient.service_error_handler()

	LinkedClient.shutdown_service()

	LinkedClient.spawn()

	LinkedClient.unlink()

	LinkedClient.address_manager

	LinkedClient.client

	LinkedClient.link

	LinkedClient.name

	LinkedClient.port

	LinkedClient.release_lock()

	LinkedClient.service_address

	LinkedClient.service_attributes

	LinkedClient.service_language

	LinkedClient.service_max_clients

	LinkedClient.service_name

	LinkedClient.service_os

	msl.network.constants
	PORT

	HOSTNAME

	HOME_DIR

	CERT_DIR

	KEY_DIR

	DATABASE

	IS_WINDOWS

	IS_LINUX

	LOCALHOST_ALIASES

	msl.network.cryptography
	generate_key()

	load_key()

	generate_certificate()

	load_certificate()

	get_default_cert_path()

	get_default_key_path()

	get_fingerprint()

	get_metadata()

	get_metadata_as_string()

	get_ssl_context()

	msl.network.database
	Database
	Database.path

	Database.connection

	Database.cursor

	Database.close()

	Database.execute()

	Database.tables()

	Database.table_info()

	Database.column_names()

	Database.column_datatypes()

	ConnectionsTable
	ConnectionsTable.NAME

	ConnectionsTable.insert()

	ConnectionsTable.connections()

	HostnamesTable
	HostnamesTable.NAME

	HostnamesTable.insert()

	HostnamesTable.delete()

	HostnamesTable.hostnames()

	UsersTable
	UsersTable.NAME

	UsersTable.insert()

	UsersTable.update()

	UsersTable.delete()

	UsersTable.get_user()

	UsersTable.records()

	UsersTable.usernames()

	UsersTable.users()

	UsersTable.is_user_registered()

	UsersTable.is_password_valid()

	UsersTable.is_admin()

	convert_datetime()

	msl.network.json
	Package
	Package.BUILTIN

	Package.JSON

	Package.ULTRA

	Package.UJSON

	Package.RAPID

	Package.RAPIDJSON

	Package.SIMPLE

	Package.SIMPLEJSON

	Package.OR

	Package.ORJSON

	use()

	serialize()

	deserialize()

	msl.network.manager
	Manager
	Manager.acquire_lock()

	Manager.new_connection()

	Manager.check_user()

	Manager.check_manager_password()

	Manager.check_identity()

	Manager.get_handshake_data()

	Manager.handler()

	Manager.release_lock()

	Manager.remove_peer()

	Manager.close_writer()

	Manager.shutdown_manager()

	Manager.identity()

	Manager.link()

	Manager.unlink()

	Manager.write_request()

	Peer

	run_forever()

	run_services()

	filter_run_forever_kwargs()

	msl.network.network
	Network
	Network.identity()

	Network.set_logging_level()

	Device
	Device.address_manager

	Device.loop_thread_id

	Device.name

	Device.port

	Device.add_tasks()

	Device.shutdown_handler()

	msl.network.service
	Service
	Service.max_clients

	Service.emit_notification()

	Service.emit_notification_threadsafe()

	Service.ignore_attributes()

	Service.start()

	Service.request

	filter_service_start_kwargs()

	msl.network.ssh
	parse_console_script_kwargs()

	start_manager()

	connect()

	exec_command()

	msl.network.utils
	ensure_root_path()

	parse_terminal_input()

msl.network package

Concurrent and asynchronous network I/O.

	
msl.network.version_info = (1, 1, 0, 'dev0')

	Contains the version information as a (major, minor, micro, releaselevel) tuple.

	Type:

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]

msl.network.client module

Use the connect() function to connect to a Network
Manager as a Client.

	
msl.network.client.connect(*, name='Client', host='localhost', port=1875, timeout=10, username=None, password=None, password_manager=None, read_limit=None, disable_tls=False, cert_file=None, assert_hostname=True, auto_save=False)

	Create a new connection to a Network Manager
as a Client.

Changed in version 0.4: Renamed certificate to certfile.

Changed in version 1.0: Renamed certfile to cert_file.
Added the auto_save and read_limit keyword arguments.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – A name to assign to the Client to help identify it on the
network.

	host (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The hostname (or IP address) of the Network
Manager that the
Client should connect to.

	port (int [https://docs.python.org/3/library/functions.html#int], optional) – The port number of the Network Manager
that the Client should connect to.

	timeout (float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait to connect to the Network
Manager.

	username (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The username to use to connect to the Network
Manager. You need to specify a username
to connect to a Manager only if the
Manager was started using the
--auth-login flag. If a username is required, and you have not
specified a value then you will be asked for a username. See
cli_start for more details.

	password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password that is associated with username. If a password is
required, and you have not specified a value then you will be asked
for the password.

	password_manager (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password that is associated with the Network
Manager. You need to specify the password
only if the Network Manager was started
using the --auth-password flag. If a password is required, and you
have not specified a value then you will be asked for the password.

	read_limit (int [https://docs.python.org/3/library/functions.html#int], optional) – The buffer size limit when reading bytes from a network stream.
If None [https://docs.python.org/3/library/constants.html#None] then there is no (practical) limit.

	disable_tls (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to connect to the Network Manager
with or without using the secure TLS protocol.

	cert_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to a certificate file to use for the secure TLS connection
with the Network Manager.
Not used if disable_tls is True [https://docs.python.org/3/library/constants.html#True].

	assert_hostname (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to check that the hostname of the Network
Manager matches the value of host.
Not used if disable_tls is True [https://docs.python.org/3/library/constants.html#True].

	auto_save (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to automatically save the certificate of the Network
Manager if the certificate is not
already saved. Not used if disable_tls is True [https://docs.python.org/3/library/constants.html#True].

	Returns:

	Client – A new connection to a Network Manager.

	
msl.network.client.filter_client_connect_kwargs(**kwargs)

	From the specified keyword arguments only return those that are valid
for connect().

New in version 0.4.

	Parameters:

	kwargs – All keyword arguments that are not in the function signature of
connect() are silently ignored and are not included in
the output.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – Valid keyword arguments that can be passed to connect().

	
class msl.network.client.Client(name)

	Bases: Device

Base class for all Clients.

Attention

Do not instantiate directly. Use connect() to connect to
a Network Manager.

	
admin_request(attrib, *args, **kwargs)

	Send a request to the Network Manager
as an administrator.

The user that calls this method must have administrative privileges
for that Manager. See
cli_user for details on how to create a user
that is an administrator .

Changed in version 0.3: Added a timeout option as one of the keyword arguments.

	Parameters:

	
	attrib (str [https://docs.python.org/3/library/stdtypes.html#str]) – The attribute of the Manager.
Can contain dots . to access sub-attributes.

	*args – The arguments to send to attrib of the
Manager.

	**kwargs – The keyword arguments to send to attrib of the
Manager. Also accepts a timeout
keyword argument as a float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int] as the
maximum number of seconds to wait for the reply from the Network
Manager. The default timeout is
None [https://docs.python.org/3/library/constants.html#None].

	Returns:

	The reply from the Network Manager.

Examples

>>> from msl.network import connect
>>> cxn = connect(**kwargs)
>>> cxn.admin_request('users_table.usernames')
['Alice', 'Bob', 'Charlie', 'Eve', 'admin']
>>> cxn.admin_request('users_table.is_user_registered', 'N.Bohr')
False

An admin can also shut down the Manager

>>> from msl.network.constants import SHUTDOWN_MANAGER
>>> cxn.admin_request(SHUTDOWN_MANAGER)

	
disconnect(timeout=None)

	Disconnect from the Network Manager.

Changed in version 1.0: Added the timeout keyword argument.

	Parameters:

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the reply from the
Network Manager.

	
is_connected()

	Whether the Client is currently connected to the
Network Manager.

New in version 1.0.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the connection is active.

	
link(service, *, timeout=None)

	Link with a Service on the Network
Manager.

Changed in version 0.3: Added the timeout keyword argument.

	Parameters:

	
	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Service to link with.

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the reply from the
Network Manager.

	Returns:

	Link – A Link with the requested service.

	
identities(*, as_string=False, indent=2, timeout=None)

	Returns the identities of all devices that are connected to the
Network Manager.

Changed in version 0.3: Added the timeout keyword argument.

Changed in version 0.4: Renamed as_yaml to as_string.

Changed in version 1.0: Renamed this method from manager to identities.

	Parameters:

	
	as_string (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to return the information from the Network
Manager as a human-readable string.

	indent (int [https://docs.python.org/3/library/functions.html#int], optional) – The amount of indentation added for each recursive level. Only used if
as_string is True [https://docs.python.org/3/library/constants.html#True].

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the reply from the
Network Manager.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] or str [https://docs.python.org/3/library/stdtypes.html#str] – The identities of all connected devices.

	
spawn(name='Client')

	Returns a new connection to the Network
Manager.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name to assign to the new Client.

	Returns:

	Client – A new Client.

	
unlink(link, *, timeout=None)

	Unlink from a Service on the Network
Manager.

New in version 0.5.

	Parameters:

	
	link (Link) – The object that is linked with the
Service.

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the reply from the
Network Manager.

	
class msl.network.client.Link(client, service, identity)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A network link between a Client and a
Service.

Attention

Not to be instantiated directly. A Client creates a
Link via the Client.link() method.

	
acquire_lock(shared=False, timeout=None)

	Acquire a lock with the linked Service.

When a lock is acquired, no more Clients are allowed to
link with the Service until all locks
have been released.

If service_max_clients returns a value of 1, then there is no
need to acquire a lock since only a single Client can link
with the Service at a time.

New in version 1.0.

	Parameters:

	
	shared (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether the lock is exclusive or shared. An exclusive lock can only
be acquired if a single Client is linked with the
Service. A shared lock allows for
multiple simultaneous links, however, once any of the linked
Clients requests a lock the lock is shared amongst the
currently-linked Clients and no new Clients
can link with the Service until all
locks have been released.

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the reply from the
Network Manager.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] – The names of the Clients that are linked with the
Service while the lock is active.
For an exclusive lock, only a single link is allowed so the list
contains a single item that is the name of the Client
that requested the lock.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If a lock cannot be acquired.

	
release_lock(timeout=None)

	Release a lock with the linked Service.

New in version 1.0.

	Parameters:

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the reply from the
Network Manager.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] – The names of the Clients that still have a lock with
the Service after this lock has
been released. An emtpy list means that there are no active locks.

	
property service_address

	The address of the Service
that this object is linked with.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property service_attributes

	The attributes of the Service
that this object is linked with.

	Type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
property service_language

	The programming language that the
Service is running on.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property service_max_clients

	The maximum number of Clients
that can be linked with the Service.
A value \(\leq\) 0 means that there is no limit.

New in version 1.0.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
property service_name

	The name of the Service
that this object is linked with.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property service_os

	The operating system that the
Service is running on.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
disconnect(timeout=None)

	An alias for unlink().

New in version 0.5.

	
notification_handler(*args, **kwargs)

	Handle a notification from the Service
that emitted a notification.

Important

You must re-assign this method at the instance level in order to
handle the notification.

New in version 0.5.

	Parameters:

	
	args – The arguments that were emitted.

	kwargs – The keyword arguments that were emitted.

Examples

The following assumes that the Heartbeat Service is running
on the same computer. Using types.MethodType [https://docs.python.org/3/library/types.html#types.MethodType] allows for the
print_notification function to access the self attribute of heartbeat.

>>> import types
>>> from msl.network import connect
>>> cxn = connect()
>>> heartbeat = cxn.link('Heartbeat')
>>> def print_notification(self, *args, **kwargs):
... print(f'The {self.service_name} Service emitted', args, kwargs)
...
>>> heartbeat.notification_handler = types.MethodType(print_notification, heartbeat)
The Heartbeat Service emitted (72,) {}
The Heartbeat Service emitted (73,) {}
The Heartbeat Service emitted (74,) {}
The Heartbeat Service emitted (75,) {}
The Heartbeat Service emitted (76,) {}
The Heartbeat Service emitted (77,) {}
>>> heartbeat.reset()
The Heartbeat Service emitted (0,) {}
The Heartbeat Service emitted (1,) {}
The Heartbeat Service emitted (2,) {}
The Heartbeat Service emitted (3,) {}
The Heartbeat Service emitted (4,) {}
The Heartbeat Service emitted (5,) {}
The Heartbeat Service emitted (6,) {}
>>> heartbeat.kill()
>>> cxn.disconnect()

See also

emit_notification(), emit_notification_threadsafe()

	
shutdown_service(*args, **kwargs)

	Send a request for the Service to
shut down.

A Service must also implement a method
called shutdown_service otherwise calling this
shutdown_service() method will raise an exception.

See Starting a Service from another computer for an example use case.

New in version 0.5.

	Parameters:

	
	args – The positional arguments that are passed to the shutdown_service
method of the Service that this object
is linked with.

	kwargs – The keyword arguments that are passed to the shutdown_service
method of the Service that this object
is linked with. Also accepts a timeout keyword argument as a
float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int] as the maximum number of seconds to
wait for the reply from the Network Manager.
The default timeout is None [https://docs.python.org/3/library/constants.html#None].

	Returns:

	Whatever the shutdown_service method of the Service returns.

	
unlink(timeout=None)

	Unlink from the Service on the Network
Manager.

New in version 0.5.

	Parameters:

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the reply from the
Network Manager.

	
class msl.network.client.LinkedClient(service_name, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Create a new Client that has a Link with the
specified Service.

New in version 0.4.

	Parameters:

	
	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Service to
link with.

	kwargs – Keyword arguments that are passed to connect().

	
acquire_lock(shared=False, timeout=None)

	See Link.acquire_lock for more details.

	
admin_request(attrib, *args, **kwargs)

	See Client.admin_request for more details.

	
disconnect(timeout=None)

	See Client.disconnect for more details.

	
identity()

	See identity for more details.

	
identities(*, as_string=False, indent=2, timeout=None)

	See Client.identities for more details.

	
is_connected()

	See Client.is_connected for more details.

	
notification_handler(*args, **kwargs)

	See Link.notification_handler for more details.

	
service_error_handler()

	This method is called immediately before an exception is raised if there
was an error processing a request on the Service
that this object is linked with.

You can override this method to perform any necessary cleanup (e.g., closing
file handles, shutting down threads, disconnecting from devices, etc.) before
a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] is raised.

The Service remains running. This is to
clean up the Client instance.

	
shutdown_service(*args, **kwargs)

	See Link.shutdown_service for more details.

	
spawn(name='LinkedClient')

	Returns a new connection to the Network Manager
that has a Link with the same Service.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name to assign to the new Client.

	Returns:

	LinkedClient – A new Client that has a Link with the same
Service.

	
unlink(timeout=None)

	See Link.unlink for more details.

	
property address_manager

	See address_manager for more details.

	
property client

	The Client that is providing the Link.

New in version 0.5.

	Type:

	Client

	
property link

	The Link with the Service.

	Type:

	Link

	
property name

	See name for more details.

	
property port

	See port for more details.

	
release_lock(timeout=None)

	See Link.release_lock for more details.

	
property service_address

	See Link.service_address for more details.

	
property service_attributes

	See Link.service_attributes for more details.

	
property service_language

	See Link.service_language for more details.

	
property service_max_clients

	See Link.service_max_clients for more details.

	
property service_name

	See Link.service_name for more details.

	
property service_os

	See Link.service_os for more details.

msl.network.constants module

Constants that are used by the MSL-Network package.

	
msl.network.constants.PORT = 1875

	The default port number to use for the Network Manager
(the year that the BIPM [https://www.bipm.org/en/home] was established).

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
msl.network.constants.HOSTNAME = 'build-22161379-project-167229-msl-network'

	The hostname of the computer.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
msl.network.constants.HOME_DIR = '/home/docs/.msl/network'

	The default directory where all files are to be located.

Can be overwritten by specifying a MSL_NETWORK_HOME environment variable.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
msl.network.constants.CERT_DIR = '/home/docs/.msl/network/certs'

	The default directory to save PEM certificates.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
msl.network.constants.KEY_DIR = '/home/docs/.msl/network/keys'

	The default directory to save private PEM keys.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
msl.network.constants.DATABASE = '/home/docs/.msl/network/manager.sqlite3'

	The default database path.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
msl.network.constants.IS_WINDOWS = False

	Whether the operating system is Windows.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
msl.network.constants.IS_LINUX = True

	Whether the operating system is Linux.

	Type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	
msl.network.constants.LOCALHOST_ALIASES = {'1.0.ip6.arpa', '1.0.0.127.in-addr.arpa', '127.0.0.1', '::1', 'build-22161379-project-167229-msl-network', 'localhost'}

	Aliases for localhost.

	Type:

	set [https://docs.python.org/3/library/stdtypes.html#set] of str [https://docs.python.org/3/library/stdtypes.html#str]

msl.network.cryptography module

Functions to create a self-signed certificate for the secure SSL/TLS protocol.

	
msl.network.cryptography.generate_key(*, path=None, algorithm='RSA', password=None, size=2048, curve='SECP384R1')

	Generate a new private key.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to save the private key to. If not specified then save the
private key in the default directory with the default filename.

	algorithm (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The encryption algorithm to use to generate the private key.
Options are:

	RSA - Rivest, Shamir, and Adleman algorithm.

	DSA - Digital Signature Algorithm.

	ECC - Elliptic Curve Cryptography.

	password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password to use to encrypt the key.

	size (int [https://docs.python.org/3/library/functions.html#int], optional) – The size (number of bits) of the key. Only used if algorithm is
RSA or DSA.

	curve (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the elliptic curve to use. Only used if algorithm is
ECC. See Elliptic Curves [https://cryptography.io/en/stable/hazmat/primitives/asymmetric/ec/#elliptic-curves]
for example elliptic-curve names.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The path to the private key.

	
msl.network.cryptography.load_key(path, *, password=None)

	Load a private key from a file.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a key file.

	password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password to use to decrypt the private key.

	Returns:

	RSAPrivateKey [https://cryptography.io/en/stable/hazmat/primitives/asymmetric/rsa/#cryptography.hazmat.primitives.asymmetric.rsa.RSAPrivateKey], DSAPrivateKey [https://cryptography.io/en/stable/hazmat/primitives/asymmetric/dsa/#cryptography.hazmat.primitives.asymmetric.dsa.DSAPrivateKey] or EllipticCurvePrivateKey [https://cryptography.io/en/stable/hazmat/primitives/asymmetric/ec/#cryptography.hazmat.primitives.asymmetric.ec.EllipticCurvePrivateKey] – The private key.

	
msl.network.cryptography.generate_certificate(*, path=None, key_path=None, key_password=None, algorithm='SHA256', years_valid=None, digest_size=None, name=None, extensions=None)

	Generate a self-signed certificate.

Changed in version 1.0: Added the digest_size, name and extensions keyword arguments.

	Parameters:

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to save the certificate to. If not specified then save the
certificate in the default directory with the default filename.

	key_path (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the private key which will be used to digitally sign the
certificate. If not specified then automatically generates a new
private key (overwriting the default private key if one already exists).

	key_password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password to use to decrypt the private key.

	algorithm (str [https://docs.python.org/3/library/stdtypes.html#str] or HashAlgorithm [https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm], optional) – The hash algorithm to use. See Message digests (Hashing) [https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes]
for allowed hash algorithms.

	years_valid (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The number of years that the certificate is valid for. If you want to
specify that the certificate is valid for 3 months then set years_valid
to be 0.25. Default is 100 years for 64-bit platforms and 15
years for 32-bit platforms.

	digest_size (int [https://docs.python.org/3/library/functions.html#int], optional) – The digest size (if the hash algorithm requires one).

	name (Name [https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Name], optional) – The object to use for the
subject_name() [https://cryptography.io/en/stable/x509/reference/#cryptography.x509.CertificateBuilder.subject_name] and the
issuer_name() [https://cryptography.io/en/stable/x509/reference/#cryptography.x509.CertificateBuilder.issuer_name]. If not
specified then a default name is used.

	extensions (list [https://docs.python.org/3/library/stdtypes.html#list] of ExtensionType [https://cryptography.io/en/stable/x509/reference/#cryptography.x509.ExtensionType], optional) – The extensions to add to the certificate.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The path to the self-signed certificate that was generated.

	
msl.network.cryptography.load_certificate(cert)

	Load a PEM certificate.

	Parameters:

	cert (str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – If str [https://docs.python.org/3/library/stdtypes.html#str] then the path to the certificate file.
If bytes [https://docs.python.org/3/library/stdtypes.html#bytes] then the raw certificate data.

	Returns:

	Certificate [https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Certificate] – The PEM certificate.

	Raises:

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If cert is not of type str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes].

	
msl.network.cryptography.get_default_cert_path()

	str [https://docs.python.org/3/library/stdtypes.html#str]: Returns the default certificate path.

	
msl.network.cryptography.get_default_key_path()

	str [https://docs.python.org/3/library/stdtypes.html#str]: Returns the default key path.

	
msl.network.cryptography.get_fingerprint(cert, *, algorithm='SHA1', digest_size=None)

	Get the fingerprint of a certificate.

Changed in version 1.0: Added the digest_size keyword argument and allow
algorithm to be a string.

	Parameters:

	
	cert (Certificate [https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Certificate]) – The PEM certificate.

	algorithm (str [https://docs.python.org/3/library/stdtypes.html#str] or HashAlgorithm [https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#cryptography.hazmat.primitives.hashes.HashAlgorithm], optional) – The hash algorithm to use. See Message digests (Hashing) [https://cryptography.io/en/stable/hazmat/primitives/cryptographic-hashes/#module-cryptography.hazmat.primitives.hashes]
for allowed hash algorithms.

	digest_size (int [https://docs.python.org/3/library/functions.html#int], optional) – The digest size (if the hash algorithm requires one).

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The fingerprint as a colon-separated hex string.

	
msl.network.cryptography.get_metadata(cert)

	Get the metadata of a certificate.

	Parameters:

	cert (Certificate [https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Certificate]) – The certificate.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The metadata of the certificate.

	
msl.network.cryptography.get_metadata_as_string(cert)

	Returns the metadata of a certificate as a human-readable string.

	Parameters:

	cert (Certificate [https://cryptography.io/en/stable/x509/reference/#cryptography.x509.Certificate]) – The certificate.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The metadata of the certificate.

	
msl.network.cryptography.get_ssl_context(*, cert_file=None, host=None, port=None, auto_save=False, **kwargs)

	Get the SSL context.

Gets the context either from connecting to a remote server or from loading
it from a file.

To get the context from a remote server you must specify both host
and port.

Changed in version 0.4: Renamed certificate to certfile.

Changed in version 1.0: Renamed certfile to cert_file.
Added the auto_save keyword argument and **kwargs.

	Parameters:

	
	cert_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to a certificate file to load. If specified then
host, port and auto_save are ignored.

	host (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The hostname or IP address of the remote server to connect to.

	port (int [https://docs.python.org/3/library/functions.html#int], optional) – The port number of the remote server to connect to.

	auto_save (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to automatically save the certificate from the server.
Default is to ask before saving.

	**kwargs – All additional keyword arguments are passed to
ssl.get_server_certificate() [https://docs.python.org/3/library/ssl.html#ssl.get_server_certificate].

	Returns:

	
	str [https://docs.python.org/3/library/stdtypes.html#str] – The path to the certificate file that was loaded.

	ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] – The SSL context.

msl.network.database module

Databases that are used by the Network Manager.

	
class msl.network.database.Database(database, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for connecting to a SQLite database.

Automatically creates the database if it does not already exist.

	Parameters:

	
	database (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the database file, or ':memory:' to open a
connection to a database that resides in RAM instead of on disk.

	kwargs – Optional keyword arguments to pass to sqlite3.connect() [https://docs.python.org/3/library/sqlite3.html#sqlite3.connect].

	
property path

	The path to the database file.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property connection

	The connection object.

	Type:

	sqlite3.Connection [https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection]

	
property cursor

	The cursor object.

	Type:

	sqlite3.Cursor [https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor]

	
close()

	Closes the connection to the database.

	
execute(sql, parameters=None)

	Wrapper around sqlite3.Cursor.execute() [https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.execute].

	Parameters:

	
	sql (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SQL command to execute

	parameters (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Only required if the sql command is parameterized.

	
tables()

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]: A list of the names of each table that is in the database.

	
table_info(name)

	Returns the information about each column in the specified table.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table to get the information of.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – The list of the fields in the table. The indices of each tuple correspond to:

	0 - id number of the column

	1 - the name of the column

	2 - the datatype of the column

	3 - whether a value in the column can be NULL (0 or 1)

	4 - the default value for the column

	5 - whether the column is used as a primary key (0 or 1)

	
column_names(table_name)

	Returns the names of the columns in the specified table.

	Parameters:

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] – A list of the names of each column in the table.

	
column_datatypes(table_name)

	Returns the datatype of each column in the specified table.

	Parameters:

	table_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the table.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] – A list of the datatypes of each column in the table.

	
class msl.network.database.ConnectionsTable(*, database=None, as_datetime=False, **kwargs)

	Bases: Database

The database table for devices that have connected to the Network
Manager.

	Parameters:

	
	database (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the database file, or ':memory:' to open a
connection to a database that resides in RAM instead of on disk.
If None [https://docs.python.org/3/library/constants.html#None] then loads the default database.

	as_datetime (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to fetch the timestamps from the database as datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]
objects. If False [https://docs.python.org/3/library/constants.html#False] then the timestamps will be of type str [https://docs.python.org/3/library/stdtypes.html#str].

	kwargs – Optional keyword arguments to pass to sqlite3.connect() [https://docs.python.org/3/library/sqlite3.html#sqlite3.connect].

	
NAME = 'connections'

	The name of the table in the database.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
insert(peer, message)

	Insert a message about what happened when a device connected.

	Parameters:

	
	peer (Peer) – The peer that connected to the Network Manager.

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message about what happened (e.g, the connection was successful,
or it failed).

	
connections(*, start=None, end=None)

	Return the information of the devices that have connected to the
Network Manager.

Changed in version 1.0: Use T as the separator between the date and time.
Renamed timestamp1 to start.
Renamed timestamp2 to end.

	Parameters:

	
	start (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Include all records that have a timestamp \(\ge\) start.
If a str [https://docs.python.org/3/library/stdtypes.html#str] then in the yyyy-mm-dd or
yyyy-mm-ddTHH:MM:SS format.

	end (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Include all records that have a timestamp \(\le\) end.
If a str [https://docs.python.org/3/library/stdtypes.html#str] then in the yyyy-mm-dd or
yyyy-mm-ddTHH:MM:SS format.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – The connection records.

	
class msl.network.database.HostnamesTable(*, database=None, **kwargs)

	Bases: Database

The database table for trusted hostname’s that are allowed to connect
to the Network Manager.

	Parameters:

	
	database (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the database file, or ':memory:' to open a
connection to a database that resides in RAM instead of on disk.
If None [https://docs.python.org/3/library/constants.html#None] then loads the default database.

	kwargs – Optional keyword arguments to pass to sqlite3.connect() [https://docs.python.org/3/library/sqlite3.html#sqlite3.connect].

	
NAME = 'auth_hostnames'

	The name of the table in the database.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
insert(hostname)

	Insert a hostname.

If the hostname is already in the table then it does not insert it again.

	Parameters:

	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) – The trusted hostname.

	
delete(hostname)

	Delete a hostname.

	Parameters:

	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) – A hostname in the table.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If hostname is not in the table.

	
hostnames()

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]: Returns all the trusted hostnames.

	
class msl.network.database.UsersTable(*, database=None, **kwargs)

	Bases: Database

The database table for keeping information about a users login credentials
for connecting to a Network Manager.

	Parameters:

	
	database (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the database file, or ':memory:' to open a
connection to a database that resides in RAM instead of on disk.
If None [https://docs.python.org/3/library/constants.html#None] then loads the default database.

	kwargs – Optional keyword arguments to pass to sqlite3.connect() [https://docs.python.org/3/library/sqlite3.html#sqlite3.connect].

	
NAME = 'auth_users'

	The name of the table in the database.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
insert(username, password, is_admin)

	Insert a new user.

The password is encrypted and stored in the database using PBKDF2 [https://en.wikipedia.org/wiki/PBKDF2]

To update the values for a user use update().

	Parameters:

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the user.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – The password of the user in plain-text format.

	is_admin (bool [https://docs.python.org/3/library/functions.html#bool]) – Does this user have admin rights?

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the username is invalid or if password is empty.

	
update(username, *, password=None, is_admin=None)

	Update either the salt used for the password and/or the admin rights.

	Parameters:

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the user.

	password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password of the user in plain-text format.

	is_admin (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Does this user have admin rights?

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If username is not in the table.
 If both password and is_admin are not specified.
 If password is an empty string.

	
delete(username)

	Delete a user.

	Parameters:

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the user.

	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If username is not in the table.

	
get_user(username)

	Get the information about a user.

	Parameters:

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the user.

	Returns:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – Returns (pid, username, key, salt, is_admin) for the specified username.

	
records()

	list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]: Returns [(pid, username, key, salt, is_admin), …]
for all users.

	
usernames()

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]: Returns the names of all registered users.

	
users()

	list [https://docs.python.org/3/library/stdtypes.html#list] of tuple [https://docs.python.org/3/library/stdtypes.html#tuple]: Returns [(username, is_admin), …] for all users.

	
is_user_registered(username)

	bool [https://docs.python.org/3/library/functions.html#bool]: Whether username is a registered user.

	
is_password_valid(username, password)

	Check whether the password matches the encrypted password in the database.

	Parameters:

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the user.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – The password to check (in plain-text format).

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether password matches the password in the database for the user.

	
is_admin(username)

	Check whether a user has admin rights.

	Parameters:

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the user.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the user has admin rights.

	
msl.network.database.convert_datetime(value)

	Convert a date and time to a datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] object.

	Parameters:

	value (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The datetime value from an SQLite database.

	Returns:

	datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] – The value as a datetime object.

msl.network.json module

This module is used as the JSON [https://www.json.org/] (de)serializer.

	
class msl.network.json.Package(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

	Bases: Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Supported Python packages for (de)serializing JSON [https://www.json.org/] objects.

By default, the builtin json [https://docs.python.org/3/library/json.html#module-json] module is used.

To change which JSON [https://www.json.org/] package to use you can call use() to set
the backend during runtime, or you can specify an MSL_NETWORK_JSON
environment variable as the default backend. For example, creating an
environment variable named MSL_NETWORK_JSON and setting its value
to be ULTRA would use UltraJSON [https://pypi.python.org/pypi/ujson] to (de)serialize JSON [https://www.json.org/] objects.

Changed in version 1.0: Moved from the msl.network.constants module and renamed.
Added JSON, UJSON, RAPIDJSON and SIMPLEJSON aliases.
Added OR (and alias ORJSON) for orjson [https://pypi.org/project/orjson/].
Removed YAJL.

	
BUILTIN = 'BUILTIN'

	json [https://docs.python.org/3/library/json.html#module-json]

	
JSON = 'BUILTIN'

	json [https://docs.python.org/3/library/json.html#module-json]

	
ULTRA = 'ULTRA'

	UltraJSON [https://pypi.python.org/pypi/ujson]

	
UJSON = 'ULTRA'

	UltraJSON [https://pypi.python.org/pypi/ujson]

	
RAPID = 'RAPID'

	RapidJSON [https://pypi.python.org/pypi/python-rapidjson]

	
RAPIDJSON = 'RAPID'

	RapidJSON [https://pypi.python.org/pypi/python-rapidjson]

	
SIMPLE = 'SIMPLE'

	simplejson [https://pypi.python.org/pypi/simplejson]

	
SIMPLEJSON = 'SIMPLE'

	simplejson [https://pypi.python.org/pypi/simplejson]

	
OR = 'OR'

	orjson [https://pypi.org/project/orjson/]

	
ORJSON = 'OR'

	orjson [https://pypi.org/project/orjson/]

	
msl.network.json.use(backend, *, loads_kwargs=None, dumps_kwargs=None)

	Set which JSON backend to use.

New in version 1.0.

Changed in version 1.1: Added the loads_kwargs and dumps_kwargs keyword arguments.

	Parameters:

	
	backend (Package or str [https://docs.python.org/3/library/stdtypes.html#str]) – An enum value or member name (case-insensitive).

	loads_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments to use for the loads function of the backend.
If not specified, default options are used.

	dumps_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments to use for the dumps function of the backend.
If not specified, default options are used.

Examples

>>> from msl.network import json
>>> json.use(json.Package.UJSON)
>>> json.use('ujson')

	
msl.network.json.serialize(obj)

	Serialize an object as a JSON-formatted string.

	Parameters:

	obj – A JSON-serializable object.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] – The JSON-formatted string.

	
msl.network.json.deserialize(s)

	Deserialize a JSON-formatted string to Python objects.

	Parameters:

	s (str [https://docs.python.org/3/library/stdtypes.html#str], bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or bytearray [https://docs.python.org/3/library/stdtypes.html#bytearray]) – A JSON-formatted string.

	Returns:

	The deserialized Python object.

msl.network.manager module

The Network Manager.

	
class msl.network.manager.Manager(port, password, login, hostnames, connections_table, users_table, hostnames_table, loop)

	Bases: Network

The Network Manager.

Attention

Not to be instantiated directly. Start the Network Manager
from the command line. Run msl-network start --help from a terminal
for more information.

	
async acquire_lock(writer, uid, service, shared)

	A request from a Client to lock
a Service.

New in version 1.0.

	Parameters:

	
	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer of the Client.

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unique identifier of the request.

	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Service that the
Client wants to acquire a lock with.

	shared (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the lock is exclusive or shared.

	
async new_connection(reader, writer)

	Receive a new connection request.

To accept the new connection request, the following checks must be successful:

	The correct authentication reply is received.

	A correct identity is received,
i.e., is the connection from a Client or
Service?

	Parameters:

	
	reader (asyncio.StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]) – The stream reader.

	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer.

	
async check_user(reader, writer)

	Check the login credentials of a user.

	Parameters:

	
	reader (asyncio.StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]) – The stream reader.

	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the login credentials are valid.

	
async check_manager_password(reader, writer)

	Check the Manager's password from the connected device.

	Parameters:

	
	reader (asyncio.StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]) – The stream reader.

	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether the correct password was received.

	
async check_identity(reader, writer)

	Check the identity of the connected device.

	Parameters:

	
	reader (asyncio.StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]) – The stream reader.

	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer.

	Returns:

	str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None] – If the identity check was successful then returns the connection type,
either 'client' or 'service', otherwise returns None [https://docs.python.org/3/library/constants.html#None].

	
async get_handshake_data(reader)

	Used by check_manager_password(), check_identity() and check_user().

	Parameters:

	reader (asyncio.StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]) – The stream reader.

	Returns:

	None [https://docs.python.org/3/library/constants.html#None], str [https://docs.python.org/3/library/stdtypes.html#str] or dict [https://docs.python.org/3/library/stdtypes.html#dict] – The data.

	
async handler(reader, writer)

	Handles requests from the connected Clients and
replies or notifications from the connected Services.

	Parameters:

	
	reader (asyncio.StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader]) – The stream reader.

	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer.

	
async release_lock(writer, uid, service)

	A request from a Client to unlock
a Service.

New in version 1.0.

	Parameters:

	
	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer of the Client.

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unique identifier of the request.

	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Service that the
Client wants to release a lock with.

	
async remove_peer(id_type, writer)

	Remove this peer from the registry of connected peers.

	Parameters:

	
	id_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the connection, either 'client' or 'service'.

	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer of the peer.

	
async close_writer(writer)

	Close the connection to the asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter].

Log that the connection is closing, drains the writer and then
closes the connection.

	Parameters:

	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer to close.

	
async shutdown_manager()

	Disconnect all Services and
Clients from the Manager
and then shut down the Manager.

	
identity()

	dict [https://docs.python.org/3/library/stdtypes.html#dict]: The identity of
the Network Manager.

	
async link(writer, uid, service)

	A request from a Client to link it
with a Service.

	Parameters:

	
	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer of the Client.

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unique identifier of the request.

	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Service that the
Client wants to link with.

	
async unlink(writer, uid, service)

	A request from a Client to unlink it
from a Service.

New in version 0.5.

	Parameters:

	
	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer of the Client.

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) – The unique identifier of the request.

	service (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the Service that the
Client wants to unlink from.

	
async write_request(writer, attribute, *args, **kwargs)

	Write a request to a Client or to a
Service.

	Parameters:

	
	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer of the Client or
Service.

	attribute (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the attribute to request.

	args – The arguments that attribute requires.

	kwargs – The key-value pairs that attribute requires.

	
class msl.network.manager.Peer(writer)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Metadata about a peer that is connected to the Network Manager.

Attention

Not to be called directly. To be called when the Network Manager
receives a new_connection() request.

	Parameters:

	writer (asyncio.StreamWriter [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter]) – The stream writer for the peer.

	
msl.network.manager.run_forever(*, host=None, port=1875, auth_hostname=False, auth_login=False, auth_password=None, database=None, disable_tls=False, cert_file=None, key_file=None, key_file_password=None, log_level='INFO', log_file=None)

	Start the event loop for the Network Manager.

This is a blocking function. It will not return until the event loop of
the Manager has stopped.

New in version 0.4.

Changed in version 1.0: Renamed certfile to cert_file.
Renamed keyfile to key_file.
Renamed keyfile_password to key_file_password.
Renamed logfile to log_file.
Removed the debug keyword argument.
Added the log_level keyword argument.
Added the host keyword argument.

	Parameters:

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The hostname or IP address to run the Network Manager on.
If unspecified then all network interfaces are used.

	port (int [https://docs.python.org/3/library/functions.html#int], optional) – The port number to run the Network Manager on.

	auth_hostname (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True] then only connections from trusted hosts are allowed.
If enabling auth_hostname then do not specify an auth_password
and do not enable auth_login. Run msl-network hostname --help
for more details.

	auth_login (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True [https://docs.python.org/3/library/constants.html#True] then checks a users login credentials (the username
and password) before a Client or
Service successfully connects. If enabling
auth_login then do not specify an auth_password and do not enable
auth_hostname. Run msl-network user --help for more details.

	auth_password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password of the Network Manager. Essentially, this can be a
thought of as a single password that all Clients
and Services need to specify before the
connection to the Network Manager is successful. Can be a path
to a file that contains the password on the first line in the file
(WARNING!! if the path does not exist then the value of the path
becomes the password). If using an auth_password then do not enable
auth_login nor auth_hostname.

	database (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the sqlite3 database that contains the records for the
following tables – ConnectionsTable, HostnamesTable,
UsersTable. If None [https://docs.python.org/3/library/constants.html#None] then loads the default database.

	disable_tls (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to use TLS for the communication protocol.

	cert_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the TLS certificate file. See
load_cert_chain() [https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain]
for more details. Only required if using TLS.

	key_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The path to the TLS key file. See
load_cert_chain() [https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain] for more details.

	key_file_password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password to decrypt the key_file. See load_cert_chain() [https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_cert_chain]
for more details. Can be a path to a file that contains the password on
the first line in the file (WARNING!! if the path does not exist
then the value of the path becomes the password).

	log_level (str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int], optional) – The logging level [https://docs.python.org/3/library/logging.html#levels] to initially use. Can also be changed
via an admin_request().

	log_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The file path to write logging messages to. If None [https://docs.python.org/3/library/constants.html#None] then uses
the default file path.

	
msl.network.manager.run_services(*services, **kwargs)

	This function starts the Network Manager and then starts the
specified Services.

This is a convenience function for running the Network Manager
only when the specified Services are all
connected to the Manager. Once all Services
disconnect from the Manager then the Manager shuts down.

This is a blocking call. It will not return until the event loop of
the Manager has stopped.

New in version 0.4.

	Parameters:

	
	services – The Services to run on the
Manager. Each Service must be
instantiated but not started. This run_services() function will
start each Service.

	kwargs – Keyword arguments are passed to run_forever() and to
start(). The keyword arguments that
are passed to run_forever() and start()
that are not valid for that function are silently ignored.

Examples

If you want to allow a Client to be able to shut down a
Service then implement a public shutdown_service()
method on the Service. For example, the following
shutdownable_example.py is a script that starts a Network Manager
and two Services

shutdownable_example.py

from msl.network import Service, run_services

class AddService(Service):

 def add(self, a, b):
 return a + b

 def shutdown_service(self, *args, **kwargs):
 # do whatever you need to do before the AddService shuts down
 # return whatever you want
 return True

class SubtractService(Service):

 def subtract(self, a, b):
 return a - b

 def shutdown_service(self, *args, **kwargs):
 # do whatever you need to do before the SubtractService shuts down
 # return whatever you want
 return 'Success!'

run_services(AddService(), SubtractService())

Then the Client script could be

from msl.network import connect

cxn = connect()
a = cxn.link('AddService')
s = cxn.link('SubtractService')
assert a.add(1, 2) == 3
assert s.subtract(1, 2) == -1
a.shutdown_service()
s.shutdown_service()

When both Services have shut down then the Network
Manager will also shut down and the run_services() function
will no longer be blocking the execution of shutdownable_example.py.

	
msl.network.manager.filter_run_forever_kwargs(**kwargs)

	From the specified keyword arguments only return those that are valid for
run_forever().

New in version 0.4.

	Parameters:

	kwargs – All keyword arguments that are not part of the function signature for
run_forever() are silently ignored and are
not included in the output.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – Valid keyword arguments that can be passed to
run_forever().

msl.network.network module

Base classes for a Manager,
Service and Client.

	
class msl.network.network.Network

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for the Manager,
Service and
Client.

	
identity() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	The identity of a device on the network.

All devices on the network must be able to identify themselves to any
other device that is connected to the network. There are 3 possible
types of network devices – a Manager,
a Service and a
Client. The member names and JSON [https://www.json.org/] datatype
for each network device is described below.

	Manager

	hostname: string
	The name of the computer that the Network
Manager is running on.

	port: integer
	The port number that the Network
Manager is running on.

	attributes: object
	An object (a Python dict [https://docs.python.org/3/library/stdtypes.html#dict]) of public attributes that the
Network Manager provides. Users
who are an administrator of the Network
Manager can request private
attributes, see admin_request().

	language: string
	The programming language that the Network
Manager is running on.

	os: string
	The name of the operating system that the Network
Manager is running on.

	clients: object
	An object (a Python dict [https://docs.python.org/3/library/stdtypes.html#dict]) of all
Client devices that are currently
connected to the Network Manager.

	services: object
	An object (a Python dict [https://docs.python.org/3/library/stdtypes.html#dict]) of all
Service devices that are currently
connected to the Network Manager.

	Service

	type: string
	This must be equal to 'service' (case-insensitive).

	name: string
	The name to associate with the
Service (can contain spaces).

	attributes: object
	An object (a Python dict [https://docs.python.org/3/library/stdtypes.html#dict]) of the attributes that the
Service provides. The keys are
the method names and the values are the method signatures
(expressed as a string).

The attributes get populated automatically when subclassing
Service. If you are creating a
Service in another programming language then you can use the
following as an example for how to define an attributes object:

{
 "pi": "() -> float",
 "add_integers": "(x:int, y:int) -> int",
 "scalar_multiply": "(a:float, data:List[floats]) -> List[floats]"
}

This Service would provide a method named pi that takes
no inputs and returns a floating-point number, a method named
add_integers that takes parameters named x and y as
integer inputs and returns an integer, and a method named
scalar_multiply that takes parameters named a as a
floating-point number and data as an array of floating-point
numbers as inputs and returns an array of floating-point numbers.

The key must be equal to the name of the method that the
Service provides; however, the value (the method signature)
is only used as a helpful guide to let a
Client know what the method takes
as inputs and what the method returns. How you express the
method signature is up to you. The above example could also
be expressed as:

{
 "pi": "() -> 3.1415926...",
 "add_integers": "(int32 x, int32 y) -> x+y",
 "scalar_multiply": "(double a, *double data) -> *double"
}

	language: string, optional
	The programming language that the
Service is running on.

	os: string, optional
	The name of the operating system that the
Service is running on.

	max_clients: integer, optional
	The maximum number of Clients
that can be linked with the Service.
If the value is \(\leq\) 0 then that means that an unlimited
number of Clients can be linked
(this is the default setting if max_clients is not specified).

	Client

	type: string
	This must be equal to 'client' (case-insensitive).

	name: string
	The name to associate with the
Client (can contain spaces).

	language: string, optional
	The programming language that the
Client is running on.

	os: string, optional
	The name of the operating system that the
Client is running on.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The identity of the network device.

	
static set_logging_level(level: str [https://docs.python.org/3/library/stdtypes.html#str] | int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Set the logging level [https://docs.python.org/3/library/logging.html#levels].

	Parameters:

	level (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – The logging level of the msl.network logger.

	Returns:

	bool [https://docs.python.org/3/library/functions.html#bool] – Whether setting the logging level was successful.

	
class msl.network.network.Device(name=None)

	Bases: Network

Base class for a Service and
Client.

New in version 1.0.

	Parameters:

	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the device as it will appear on the Network
Manager. If not specified
then the class name is used.

	
property address_manager

	The address of the Manager
that this device is connected to.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property loop_thread_id

	Identifier of the thread running the event loop.

Returns None [https://docs.python.org/3/library/constants.html#None] if the event loop is not running.

New in version 1.0.

	
property name

	The name of the device on the
Manager.

	Type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property port

	The port number of this device that is being used for
the connection to the Manager.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
add_tasks(*coros_or_futures)

	Additional tasks to run in the event loop.

New in version 1.0.

	Parameters:

	coros_or_futures – Coroutines or futures that will be passed to
asyncio.gather() [https://docs.python.org/3/library/asyncio-task.html#asyncio.gather] when the event loop runs.

	
shutdown_handler()

	Called after the connection to the Network
Manager has been lost but before
the event loop stops.

Override this method to do any necessary cleanup.

New in version 1.0.

msl.network.service module

Base class for all Services.

	
class msl.network.service.Service(*, name=None, max_clients=None, ignore_attributes=None)

	Bases: Device

Base class for all Services.

New in version 0.4: The name and max_clients keyword argument.

New in version 0.5: The ignore_attributes keyword argument.

New in version 1.0: If a method of the Service returns an object that is not natively
JSON serializable, then the returned object can have a callable
to_json() method and the value returned by to_json() will be
used in the response to the Client.

	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the Service as it will appear on the Network
Manager. If not specified
then the class name is used. You can also specify the name
in the start() method.

	max_clients (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum number of Clients
that can be linked with this Service. A value \(\leq\) 0
or None [https://docs.python.org/3/library/constants.html#None] means that there is no limit.

	ignore_attributes (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The names of the attributes to not include in the
identity of the Service.
See ignore_attributes() for more details.

	
property max_clients

	The maximum number of Clients
that can be linked with this Service. A value \(\leq\) 0 means an
unlimited number of Clients can be linked.

	Type:

	int [https://docs.python.org/3/library/functions.html#int]

	
emit_notification(*args, **kwargs)

	Emit a notification to all Clients that
are Linked with this Service.

New in version 0.5.

	Parameters:

	
	args – The arguments to emit.

	kwargs – The keyword arguments to emit.

See also

emit_notification_threadsafe(), notification_handler()

	
emit_notification_threadsafe(*args, **kwargs)

	A thread-safe implementation of emit_notification().

When a Service handles a request, it does so in a separate
thread than the event loop is running in. Therefore, if a method of
the Service class wants to emit a notification while it is
handling a request then it must emit the notification in a
thread-safe manner.

New in version 1.0.

	Parameters:

	
	args – The arguments to emit.

	kwargs – The keyword arguments to emit.

See also

emit_notification(), notification_handler()

	
ignore_attributes(*names)

	Ignore attributes from being added to the
identity of the Service.

There are a few reasons why you may want to call this method:

	If you see warnings that an object is not JSON serializable or that
the signature of an attribute cannot be found when starting the
Service and you prefer not to see the warnings.

	If you do not want an attribute to be made publicly known that it
exists. However, a Client can still
access the ignored attributes.

Private attributes (i.e., attributes that start with an underscore)
are automatically ignored and cannot be accessed from a
Client on the network.

If you want to ignore any attributes then you must call
ignore_attributes() before calling start().

New in version 0.5.

	Parameters:

	names – The names of the attributes to not include in the
identity of the Service.

	
start(*, name=None, host='localhost', port=1875, timeout=10, username=None, password=None, password_manager=None, read_limit=None, disable_tls=False, cert_file=None, assert_hostname=True, auto_save=False)

	Start the Service.

See connect() for the description
of each parameter.

	
property request

	Returns the latest request.

This property is meant to be used by a subclass that may want to know
the information about the request while processing it.

Since a request is executed in a separate thread and this property
returns the latest request, the subclass should immediately extract
the necessary information from the request before the Service
receives a new request.

The key-value pairs in the request are:

{
 'args': list,
 'attribute': str,
 'kwargs': dict,
 'service': str (the name of this Service),
 'uid': str,
 'requester': str,
}

New in version 1.1.

	Type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
msl.network.service.filter_service_start_kwargs(**kwargs)

	From the specified keyword arguments only return those that are valid
for start().

New in version 0.4.

	Parameters:

	kwargs – All keyword arguments that are not part of the method signature for
start() are silently ignored and
are not included in the output.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – Valid keyword arguments that can be passed to
start().

msl.network.ssh module

Helper functions for connecting to a remote computer via SSH [https://www.ssh.com/academy/ssh].

Follow these instructions [https://winscp.net/eng/docs/guide_windows_openssh_server]
to install/enable an SSH [https://www.ssh.com/academy/ssh] server on Windows. You can also create an SSH [https://www.ssh.com/academy/ssh] server using the
paramiko [https://docs.paramiko.org/en/stable/api/server.html] package (which is included
when MSL-Network is installed).

The two functions start_manager() and parse_console_script_kwargs()
are meant to be used together to automatically start a Network
Manager, and possibly
Services, on a remote computer.

See Starting a Service from another computer for an example on how to start a Service
on a Raspberry Pi from another computer.

	
msl.network.ssh.parse_console_script_kwargs()

	Parses the command line for keyword arguments sent from a remote computer.

New in version 0.4.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The keyword arguments that were passed from start_manager().

	
msl.network.ssh.start_manager(host, console_script_path, *, ssh_username=None, ssh_password=None, timeout=10, as_sudo=False, missing_host_key_policy=None, paramiko_kwargs=None, **kwargs)

	Start a Network Manager on a remote computer.

New in version 0.4.

	Parameters:

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – The hostname (or IP address) of the remote computer. For example – '192.168.1.100',
'raspberrypi', 'pi@raspberrypi'

	console_script_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file path to where the console script [https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html#the-console-scripts-entry-point] is located on the remote computer.

	ssh_username (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The username to use to establish the SSH [https://www.ssh.com/academy/ssh] connection. If None [https://docs.python.org/3/library/constants.html#None] and the
ssh_username is not specified in host then you will be asked for
the ssh_username.

	ssh_password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password to use to establish the SSH [https://www.ssh.com/academy/ssh] connection. If None [https://docs.python.org/3/library/constants.html#None]
then you will be asked for the ssh_password.

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the SSH [https://www.ssh.com/academy/ssh] connection.

	as_sudo (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Whether to run the console script [https://python-packaging.readthedocs.io/en/latest/command-line-scripts.html#the-console-scripts-entry-point] as a superuser.

	missing_host_key_policy (MissingHostKeyPolicy [https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.MissingHostKeyPolicy], optional) – The policy to use when connecting to servers without a known host key. If
None [https://docs.python.org/3/library/constants.html#None] then uses AutoAddPolicy [https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.AutoAddPolicy].

	paramiko_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Additional keyword arguments that are passed to ssh.connect.

	kwargs – The keyword arguments in run_forever(), and if
that console script also starts Services
on the remote computer as well, then the keyword arguments also found in
start(). The kwargs should be parsed
by parse_console_script_kwargs() on the remote computer.

	
msl.network.ssh.connect(host, *, username=None, password=None, timeout=10, missing_host_key_policy=None, **kwargs)

	SSH [https://www.ssh.com/academy/ssh] to a remote computer.

New in version 0.4.

	Parameters:

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – The hostname (or IP address) of the remote computer. For example – '192.168.1.100',
'raspberrypi', 'pi@raspberrypi'

	username (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The username to use to establish the SSH [https://www.ssh.com/academy/ssh] connection. If None [https://docs.python.org/3/library/constants.html#None] and the
username is not specified in host then you will be asked for
the username.

	password (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The password to use to establish the SSH [https://www.ssh.com/academy/ssh] connection. If None [https://docs.python.org/3/library/constants.html#None]
then you will be asked for the password.

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the SSH [https://www.ssh.com/academy/ssh] connection.

	missing_host_key_policy (MissingHostKeyPolicy [https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.MissingHostKeyPolicy], optional) – The policy to use when connecting to servers without a known host key. If
None [https://docs.python.org/3/library/constants.html#None] then uses AutoAddPolicy [https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.AutoAddPolicy].

	kwargs – Additional keyword arguments that are passed to
SSHClient.connect [https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect].

	Returns:

	SSHClient [https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient] – The SSH [https://www.ssh.com/academy/ssh] connection to the remote computer.

	
msl.network.ssh.exec_command(ssh_client, command, *, timeout=10)

	Execute the SSH [https://www.ssh.com/academy/ssh] command on the remote computer.

New in version 0.4.

	Parameters:

	
	ssh_client (SSHClient [https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient]) – The SSH [https://www.ssh.com/academy/ssh] client that has already established a connection to the remote computer.
See also connect().

	command (str [https://docs.python.org/3/library/stdtypes.html#str]) – The command to execute on the remote computer.

	timeout (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float], optional) – The maximum number of seconds to wait for the command to finish.

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If an error occurred. Either a timeout or stderr on the remote computer
 contains text from executing the command.

	Returns:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str] – stdout from the remote computer.

msl.network.utils module

Common functions used by MSL-Network.

	
msl.network.utils.ensure_root_path(path)

	Ensure that the root directory of the file path exists.

	Parameters:

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – A file path. For example, if path is /the/path/to/my/test/file.txt
then this function would ensure that the /the/path/to/my/test directories
exist (creating the intermediate directories if necessary).

	
msl.network.utils.parse_terminal_input(line)

	Parse text from a terminal connection.

See, Connecting from a Terminal for more details.

	Parameters:

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – The input text from the terminal.

	Returns:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] – The JSON [https://www.json.org/] object.

License

MIT License

Copyright (c) 2017 - 2023, Measurement Standards Laboratory of New Zealand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Developers

	Joseph Borbely <joseph.borbely@measurement.govt.nz>

Release Notes

Version 1.1.0 (in development)

	Added

	support for Python 3.12

	the Service.request property

	loads_kwargs and dumps_kwargs keyword arguments to use()

	Fixed

	the to_json() method was not reliably called for an object, which resulted
in the object not being JSON serializable

	Removed

	Support for Python 3.6 and 3.7

Version 1.0.0 (2023-06-16)

	Added

	a Link can create an exclusive or shared lock
with a Service

	add service_max_clients property to a
Link and
LinkedClient

	the loop_thread_id property for a
Service and a Client

	the emit_notification_threadsafe() method
for a Service

	ability to specify the host to use when starting a Manager

	support for Python 3.9, 3.10 and 3.11

	set_logging_level() to be able to set the
logging level at runtime

	ability to add tasks to the event loop via the
add_tasks() method

	the shutdown_handler() method is called
after the connection to the Manager is lost
but before the event loop stops

	ability to use all Database classes as a
context manager (i.e., using a with statement)

	the --log-level flag to the start command

	the delete command-line argument to delete files that are created by MSL-Network

	orjson [https://pypi.org/project/orjson/] as a JSON backend to
Package

	JSON, UJSON, RAPIDJSON and SIMPLEJSON are aliases
for the JSON backends in Package

	the read_limit keyword arguments to
connect() and
start()

	the auto_save keyword argument to connect()
and get_ssl_context()

	the digest_size keyword argument to
generate_certificate() and
get_fingerprint()

	the name and extensions keyword arguments to
generate_certificate(),

	**kwargs to get_ssl_context()

	Changed

	the result object that is returned by a Service
response can implement a callable to_json() method

	the value of the algorithm keyword argument in
get_fingerprint()
can now also be of type str [https://docs.python.org/3/library/stdtypes.html#str]

	renamed uuid to be uid in the JSON format

	making an asynchronous request now returns a concurrent.futures.Future [https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future] instance
instead of an asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] instance

	Client and Service
are subclasses of Device

	move the utils.localhost_aliases function to be defined as
LOCALHOST_ALIASES

	renamed the Client.manager method to identities()

	renamed certfile to cert_file in connect(),
start()
and get_ssl_context()

	can now change which JSON backend to use during runtime by calling the
use() function

	moved the msl.network.constants.JSONPackage class to
msl.network.json.Package

	renamed the command line arguments --certfile to --cert-file,
--keyfile to --key-file, --keyfile-password to --key-file-password,
and --logfile to --log-file for the start command

	use T as the separator between the date and time in
a ConnectionsTable

	rename the keyword arguments timestamp1 to start and timestamp2
to end in connections()

	the default filename for the certificate and key files now use 'localhost'
instead of the value of HOSTNAME

	Fixed

	an AttributeError could be raised when generating the identity of a
Service

	can now handle multiple requests/replies contained within the same network
packet

	Removed

	Support for Python 3.5

	the MSLNetworkError exception class (a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] is raised instead)

	the Service.set_debug method

	the termination and encoding class attributes of
Network

	the send_pending_requests, raise_latest_error and wait
methods of a Client

	the --debug flag from the start command

	the utils.new_selector_event_loop function

	the constants.JSON attribute

	YAJL [https://pypi.org/project/yajl/] as a JSON backend option

Version 0.5.0 (2020-03-18)

	Added

	support for Python 3.8

	the utils.new_selector_event_loop function to create a new asyncio.SelectorEventLoop

	the --logfile command line argument for the start command

	a Service can emit notifications to all Clients that are linked with it

	a Service now accepts an ignore_attributes keyword argument when it is instantiated
and also has an ignore_attributes method

	a Link can unlink from a Service

	the LinkedClient.client property

	1.0.0.127.in-addr.arpa as a localhost alias

	Changed

	use __package__ as the logger name

	the FileHandler and StreamHandler that are added to the root logger now use a
decimal point instead of a comma between the seconds and milliseconds values

	renamed the disconnect_service method for a Link and a Service
(which was added in version 0.4.0) to be shutdown_service

	Removed

	the Service._shutdown method since it is no longer necessary to call this method
from the Service subclass because shutting down happens automatically behind the scenes

Version 0.4.1 (2019-07-23)

	Added

	1.0.ip6.arpa as a localhost alias

	Changed

	calling the Client.manager(as_string=True) method now prints the attributes
analogous to how a Client would call the method of a Service

	Fixed

	the timeout value for creating a LinkedClient is now the total time that it
takes to connect to the Network Manager plus the time required to link with the
Service (this fixes a race condition when starting a Service on a remote
computer and then trying to link to the same Service)

Version 0.4.0 (2019-04-16)

	Added

	the ssh module

	a LinkedClient class

	the run_forever (to start the Manager) and the run_services (to start the Manager
and then start the Services) functions

	the filter_service_start_kwargs, filter_run_forever_kwargs and
filter_client_connect_kwargs functions

	a disconnect_service method to Link

	shorter argument name options for some CLI parameters

	a Service now accepts name and max_clients as keyword arguments when it is instantiated

	Changed

	the following CLI changes to argument names for the certgen command

	--key-path became --keyfile

	--key-password became --keyfile-password

	the following CLI changes to argument names for the keygen command

	--path became --out

	the following CLI changes to argument names for the start command

	--cert became --certfile

	--key became --keyfile

	--key-password became --keyfile-password

	the certificate keyword argument for the connect and get_ssl_context functions and
for the Service.start method was changed to certfile

	the as_yaml keyword argument for the Client.manager method was changed to as_string

	a Client can no longer request a private attribute – i.e., an attribute that starts with
a _ (an underscore) – from a Service

	the default timeout value for connecting to the Manager is now 10 seconds

	Fixed

	perform error handling if the Manager attempts to start on a port that is already in use

	issue #7 [https://github.com/MSLNZ/msl-network/issues/7] - a Service can now specify
the maximum number of Clients that can be linked with it

	issue #6 [https://github.com/MSLNZ/msl-network/issues/6] - the password_manager keyword
argument is now used properly when starting a Service

	Removed

	the name class attribute for a Service

	the send_request method for a Client (must link with a Service)

Version 0.3.0 (2019-01-06)

	Added

	every request from a Client can now specify a timeout value

	the docs now include an example for how to send requests to the Echo Service

	Changed

	the default timeout value for connecting to the Manager is now 10 seconds

	the __repr__ method for a Client no longer includes the id as a hex number

	Fixed

	issue #5 [https://github.com/MSLNZ/msl-network/issues/5]

	issue #4 [https://github.com/MSLNZ/msl-network/issues/4]

	issue #3 [https://github.com/MSLNZ/msl-network/issues/3]

	issue #2 [https://github.com/MSLNZ/msl-network/issues/2]

	issue #1 [https://github.com/MSLNZ/msl-network/issues/1]

	Removed

	the __repr__ method for a Service

Version 0.2.0 (2018-08-24)

	Added

	a wakeup() Task in debug mode on Windows (see: https://bugs.python.org/issue23057)

	the version_info named tuple now includes a releaselevel

	example for creating a Client and a Service in LabVIEW

	the ability to establish a connection to the Network Manager without using TLS

	a timeout kwarg to Service.start()

	an Echo Service to the examples

	Changed

	rename ‘async’ kwarg to be ‘asynchronous’ (for Python 3.7 support)

	the termination bytes were changed from \n to \r\n

Version 0.1.0 (2017-12-14)

	Initial release

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 msl	

 	
 	
 msl.network	

 	
 	
 msl.network.cli_certdump	

 	
 	
 msl.network.cli_certgen	

 	
 	
 msl.network.cli_delete	

 	
 	
 msl.network.cli_hostname	

 	
 	
 msl.network.cli_keygen	

 	
 	
 msl.network.cli_start	

 	
 	
 msl.network.cli_user	

 	
 	
 msl.network.client	

 	
 	
 msl.network.constants	

 	
 	
 msl.network.cryptography	

 	
 	
 msl.network.database	

 	
 	
 msl.network.json	

 	
 	
 msl.network.manager	

 	
 	
 msl.network.network	

 	
 	
 msl.network.service	

 	
 	
 msl.network.ssh	

 	
 	
 msl.network.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	acquire_lock() (msl.network.client.Link method)

 	(msl.network.client.LinkedClient method)

 	(msl.network.manager.Manager method)

 	add_parser_certdump() (in module msl.network.cli_certdump)

 	add_parser_certgen() (in module msl.network.cli_certgen)

 	add_parser_delete() (in module msl.network.cli_delete)

 	add_parser_hostname() (in module msl.network.cli_hostname)

 	
 	add_parser_keygen() (in module msl.network.cli_keygen)

 	add_parser_start() (in module msl.network.cli_start)

 	add_parser_user() (in module msl.network.cli_user)

 	add_tasks() (msl.network.network.Device method)

 	address_manager (msl.network.client.LinkedClient property)

 	(msl.network.network.Device property)

 	admin_request() (msl.network.client.Client method)

 	(msl.network.client.LinkedClient method)

B

 	
 	BUILTIN (msl.network.json.Package attribute)

C

 	
 	CERT_DIR (in module msl.network.constants)

 	check_identity() (msl.network.manager.Manager method)

 	check_manager_password() (msl.network.manager.Manager method)

 	check_user() (msl.network.manager.Manager method)

 	Client (class in msl.network.client)

 	client (msl.network.client.LinkedClient property)

 	close() (msl.network.database.Database method)

 	close_writer() (msl.network.manager.Manager method)

 	
 	column_datatypes() (msl.network.database.Database method)

 	column_names() (msl.network.database.Database method)

 	connect() (in module msl.network.client)

 	(in module msl.network.ssh)

 	connection (msl.network.database.Database property)

 	connections() (msl.network.database.ConnectionsTable method)

 	ConnectionsTable (class in msl.network.database)

 	convert_datetime() (in module msl.network.database)

 	cursor (msl.network.database.Database property)

D

 	
 	Database (class in msl.network.database)

 	DATABASE (in module msl.network.constants)

 	delete() (msl.network.database.HostnamesTable method)

 	(msl.network.database.UsersTable method)

 	
 	deserialize() (in module msl.network.json)

 	Device (class in msl.network.network)

 	disconnect() (msl.network.client.Client method)

 	(msl.network.client.Link method)

 	(msl.network.client.LinkedClient method)

E

 	
 	emit_notification() (msl.network.service.Service method)

 	emit_notification_threadsafe() (msl.network.service.Service method)

 	ensure_root_path() (in module msl.network.utils)

 	exec_command() (in module msl.network.ssh)

 	execute() (in module msl.network.cli_certdump)

 	(in module msl.network.cli_certgen)

 	(in module msl.network.cli_delete)

 	(in module msl.network.cli_hostname)

 	(in module msl.network.cli_keygen)

 	(in module msl.network.cli_start)

 	(in module msl.network.cli_user)

 	(msl.network.database.Database method)

F

 	
 	filter_client_connect_kwargs() (in module msl.network.client)

 	
 	filter_run_forever_kwargs() (in module msl.network.manager)

 	filter_service_start_kwargs() (in module msl.network.service)

G

 	
 	generate_certificate() (in module msl.network.cryptography)

 	generate_key() (in module msl.network.cryptography)

 	get_default_cert_path() (in module msl.network.cryptography)

 	get_default_key_path() (in module msl.network.cryptography)

 	get_fingerprint() (in module msl.network.cryptography)

 	
 	get_handshake_data() (msl.network.manager.Manager method)

 	get_metadata() (in module msl.network.cryptography)

 	get_metadata_as_string() (in module msl.network.cryptography)

 	get_ssl_context() (in module msl.network.cryptography)

 	get_user() (msl.network.database.UsersTable method)

H

 	
 	handler() (msl.network.manager.Manager method)

 	HOME_DIR (in module msl.network.constants)

 	
 	HOSTNAME (in module msl.network.constants)

 	hostnames() (msl.network.database.HostnamesTable method)

 	HostnamesTable (class in msl.network.database)

I

 	
 	identities() (msl.network.client.Client method)

 	(msl.network.client.LinkedClient method)

 	identity() (msl.network.client.LinkedClient method)

 	(msl.network.manager.Manager method)

 	(msl.network.network.Network method)

 	ignore_attributes() (msl.network.service.Service method)

 	insert() (msl.network.database.ConnectionsTable method)

 	(msl.network.database.HostnamesTable method)

 	(msl.network.database.UsersTable method)

 	
 	is_admin() (msl.network.database.UsersTable method)

 	is_connected() (msl.network.client.Client method)

 	(msl.network.client.LinkedClient method)

 	IS_LINUX (in module msl.network.constants)

 	is_password_valid() (msl.network.database.UsersTable method)

 	is_user_registered() (msl.network.database.UsersTable method)

 	IS_WINDOWS (in module msl.network.constants)

J

 	
 	JSON (msl.network.json.Package attribute)

K

 	
 	KEY_DIR (in module msl.network.constants)

L

 	
 	Link (class in msl.network.client)

 	link (msl.network.client.LinkedClient property)

 	link() (msl.network.client.Client method)

 	(msl.network.manager.Manager method)

 	
 	LinkedClient (class in msl.network.client)

 	load_certificate() (in module msl.network.cryptography)

 	load_key() (in module msl.network.cryptography)

 	LOCALHOST_ALIASES (in module msl.network.constants)

 	loop_thread_id (msl.network.network.Device property)

M

 	
 	Manager (class in msl.network.manager)

 	max_clients (msl.network.service.Service property)

 	
 module

 	msl.network

 	msl.network.cli_certdump

 	msl.network.cli_certgen

 	msl.network.cli_delete

 	msl.network.cli_hostname

 	msl.network.cli_keygen

 	msl.network.cli_start

 	msl.network.cli_user

 	msl.network.client

 	msl.network.constants

 	msl.network.cryptography

 	msl.network.database

 	msl.network.json

 	msl.network.manager

 	msl.network.network

 	msl.network.service

 	msl.network.ssh

 	msl.network.utils

 	
 msl.network

 	module

 	
 msl.network.cli_certdump

 	module

 	
 msl.network.cli_certgen

 	module

 	
 msl.network.cli_delete

 	module

 	
 	
 msl.network.cli_hostname

 	module

 	
 msl.network.cli_keygen

 	module

 	
 msl.network.cli_start

 	module

 	
 msl.network.cli_user

 	module

 	
 msl.network.client

 	module

 	
 msl.network.constants

 	module

 	
 msl.network.cryptography

 	module

 	
 msl.network.database

 	module

 	
 msl.network.json

 	module

 	
 msl.network.manager

 	module

 	
 msl.network.network

 	module

 	
 msl.network.service

 	module

 	
 msl.network.ssh

 	module

 	
 msl.network.utils

 	module

N

 	
 	name (msl.network.client.LinkedClient property)

 	NAME (msl.network.database.ConnectionsTable attribute)

 	(msl.network.database.HostnamesTable attribute)

 	(msl.network.database.UsersTable attribute)

 	
 	name (msl.network.network.Device property)

 	Network (class in msl.network.network)

 	new_connection() (msl.network.manager.Manager method)

 	notification_handler() (msl.network.client.Link method)

 	(msl.network.client.LinkedClient method)

O

 	
 	OR (msl.network.json.Package attribute)

 	
 	ORJSON (msl.network.json.Package attribute)

P

 	
 	Package (class in msl.network.json)

 	parse_console_script_kwargs() (in module msl.network.ssh)

 	parse_terminal_input() (in module msl.network.utils)

 	path (msl.network.database.Database property)

 	
 	Peer (class in msl.network.manager)

 	PORT (in module msl.network.constants)

 	port (msl.network.client.LinkedClient property)

 	(msl.network.network.Device property)

R

 	
 	RAPID (msl.network.json.Package attribute)

 	RAPIDJSON (msl.network.json.Package attribute)

 	records() (msl.network.database.UsersTable method)

 	release_lock() (msl.network.client.Link method)

 	(msl.network.client.LinkedClient method)

 	(msl.network.manager.Manager method)

 	
 	remove_peer() (msl.network.manager.Manager method)

 	request (msl.network.service.Service property)

 	run_forever() (in module msl.network.manager)

 	run_services() (in module msl.network.manager)

S

 	
 	serialize() (in module msl.network.json)

 	Service (class in msl.network.service)

 	service_address (msl.network.client.Link property)

 	(msl.network.client.LinkedClient property)

 	service_attributes (msl.network.client.Link property)

 	(msl.network.client.LinkedClient property)

 	service_error_handler() (msl.network.client.LinkedClient method)

 	service_language (msl.network.client.Link property)

 	(msl.network.client.LinkedClient property)

 	service_max_clients (msl.network.client.Link property)

 	(msl.network.client.LinkedClient property)

 	service_name (msl.network.client.Link property)

 	(msl.network.client.LinkedClient property)

 	
 	service_os (msl.network.client.Link property)

 	(msl.network.client.LinkedClient property)

 	set_logging_level() (msl.network.network.Network static method)

 	shutdown_handler() (msl.network.network.Device method)

 	shutdown_manager() (msl.network.manager.Manager method)

 	shutdown_service() (msl.network.client.Link method)

 	(msl.network.client.LinkedClient method)

 	SIMPLE (msl.network.json.Package attribute)

 	SIMPLEJSON (msl.network.json.Package attribute)

 	spawn() (msl.network.client.Client method)

 	(msl.network.client.LinkedClient method)

 	start() (msl.network.service.Service method)

 	start_manager() (in module msl.network.ssh)

T

 	
 	table_info() (msl.network.database.Database method)

 	
 	tables() (msl.network.database.Database method)

U

 	
 	UJSON (msl.network.json.Package attribute)

 	ULTRA (msl.network.json.Package attribute)

 	unlink() (msl.network.client.Client method)

 	(msl.network.client.Link method)

 	(msl.network.client.LinkedClient method)

 	(msl.network.manager.Manager method)

 	
 	update() (msl.network.database.UsersTable method)

 	use() (in module msl.network.json)

 	usernames() (msl.network.database.UsersTable method)

 	users() (msl.network.database.UsersTable method)

 	UsersTable (class in msl.network.database)

V

 	
 	version_info (in module msl.network)

W

 	
 	write_request() (msl.network.manager.Manager method)

 _static/labview_service_template_fp.png
Senvice_templatevi

Ele Edit View Project Operate Tools Window Help

1] (S5t Applcstion Font |~ =

J-je] [

Network Manager IP Address or Hostname NOTE: The function names and corresponding
sub-Vis must be added to the case sequence
on the block diagram.

Network Manager port

function name function signature
usemame o
password

emor out
Service Neme s

elements in queue

_static/minus.png

_static/labview_service_fp.png
Ele dit View Project Operte lools Window Help

[1n] [£5pt Application Font |~ [#=][a~ [[85-] [

Network Manager IP Address or Hostname

Network Manager port

A
e function name. function signature.

0 Jadd_numbers (xnumber, y:number)
5o > number

elements n queue
0

error out
status
4

- —

_static/labview_service_template_bd.png
Eile Edit View Project Operate Tools Window Help

2 R ez s = [

o Error <B

Fervce 1
10

sttributes - name e

[EeBpowosmsn attributes 1

"CHANGE ME!"]

No Error 7]

Network Manager IP Address or Hostname

e e

Network Manager port

imeout ms

E—

[Change the value of 'CHANGE ME! to be one
lof the values in the fist column of the 2D.
"attributes" array and insert the sub-VI that
|executes the task for the Service here.

[The error wire that enters this case structure
lgoes in to the sub-V1 and the result (as 2 JSON.
[Tree) and the error that exits the sub-VI are

[wired to the two unwired terminals to the right.

error out

Atimeout mo]

_static/sync_vs_async.png
Synchronous

One request at a time
I N S R S——

Asynchronous
Multiple requests at a time

_static/plus.png

nav.xhtml

 Table of Contents

 		
 MSL-Network

 		
 Install

 		
 Compatibility

 		
 Dependencies

 		
 Usage

 		
 Start the Network Manager

 		
 Start a Service on the Network Manager

 		
 BasicMath Service

 		
 Connect to the Network Manager as a Client

 		
 Concurrency & Asynchronous Programming

 		
 Concurrency

 		
 Asynchronous Programming

 		
 Synchronous Example

 		
 Asynchronous Example

 		
 Synchronous vs Asynchronous comparison

 		
 JSON Formats

 		
 Client Format

 		
 Service Format

 		
 Connecting from a Terminal

 		
 Python Examples

 		
 Digital Multimeter

 		
 Additional (Runnable) Examples

 		
 Echo Service

 		
 BasicMath Service

 		
 MyArray Service

 		
 Heartbeat Service

 		
 Non-Python Examples

 		
 LabVIEW

 		
 Client

 		
 Service

 		
 Starting a Service from another computer

 		
 Command Line Interface

 		
 certdump

 		
 add_parser_certdump()

 		
 execute()

 		
 certgen

 		
 add_parser_certgen()

 		
 execute()

 		
 delete

 		
 add_parser_delete()

 		
 execute()

 		
 hostname

 		
 add_parser_hostname()

 		
 execute()

 		
 keygen

 		
 add_parser_keygen()

 		
 execute()

 		
 start

 		
 add_parser_start()

 		
 execute()

 		
 user

 		
 add_parser_user()

 		
 execute()

 		
 API

 		
 Package Structure

 		
 msl.network

 		
 msl.network.client

 		
 msl.network.constants

 		
 msl.network.cryptography

 		
 msl.network.database

 		
 msl.network.json

 		
 msl.network.manager

 		
 msl.network.network

 		
 msl.network.service

 		
 msl.network.ssh

 		
 msl.network.utils

 		
 License

 		
 Authors

 		
 Release Notes

 		
 Version 1.1.0 (in development)

 		
 Version 1.0.0 (2023-06-16)

 		
 Version 0.5.0 (2020-03-18)

 		
 Version 0.4.1 (2019-07-23)

 		
 Version 0.4.0 (2019-04-16)

 		
 Version 0.3.0 (2019-01-06)

 		
 Version 0.2.0 (2018-08-24)

 		
 Version 0.1.0 (2017-12-14)

_images/concurrency_vs_parallelism.png
Concurrency Parallelism

Tasks start, run and Tasks run
complete in simultaneously
an interleaved fashion

_images/labview_service_bd.png
few Project Qperate Tools Window Help

][] bl (e pepisionron -] [S-14] bl aRlE

FioErr B

[Service -]

rvice Name 0
poerere B0

atrbutes [e s

o Error <]
[trbtES 1

o5] | emorout
e = o] | poweef | 52
Network Manager IP Address or Hostname

b
et arsgerpot

Atimeout mo]
timeout ms

E—

_images/labview_service_fp.png
Ele dit View Project Operte lools Window Help

[1n] [£5pt Application Font |~ [#=][a~ [[85-] [

Network Manager IP Address or Hostname

Network Manager port

A
e function name. function signature.

0 Jadd_numbers (xnumber, y:number)
5o > number

elements n queue
0

error out
status
4

- —

_images/labview_client_bd.png
Ele Edit View Project Operate Tools Window Help

L] 0 (][9]] el [apiconon][5

o] [o]

Network Manager IP Address or Hostname

[,

Network Manager port

s | S
Fe = -

[Object -]

Numeric ~]| [Numeric ~] [Numeric ~]

Numeric +]

result
(]

L error out
=

_images/labview_client_fp.png
MyArray_clienti

Eile Edit View Project Operate Tools Window Help

[o[@] @ 1] [15pt Appicaton Fort -1 [=al?
Network Manager IP Address or Hostname. i) 5 e
Network Manager port
S
Senice name
Wyrsy
function name

erorout
lnspace r——
st stop n g o
Ju G Gw source

_images/labview_service_template_fp.png
Senvice_templatevi

Ele Edit View Project Operate Tools Window Help

1] (S5t Applcstion Font |~ =

J-je] [

Network Manager IP Address or Hostname NOTE: The function names and corresponding
sub-Vis must be added to the case sequence
on the block diagram.

Network Manager port

function name function signature
usemame o
password

emor out
Service Neme s

elements in queue

_images/sync_vs_async.png
Synchronous

One request at a time
I N S R S——

Asynchronous
Multiple requests at a time

_images/labview_service_template_bd.png
Eile Edit View Project Operate Tools Window Help

2 R ez s = [

o Error <B

Fervce 1
10

sttributes - name e

[EeBpowosmsn attributes 1

"CHANGE ME!"]

No Error 7]

Network Manager IP Address or Hostname

e e

Network Manager port

imeout ms

E—

[Change the value of 'CHANGE ME! to be one
lof the values in the fist column of the 2D.
"attributes" array and insert the sub-VI that
|executes the task for the Service here.

[The error wire that enters this case structure
lgoes in to the sub-V1 and the result (as 2 JSON.
[Tree) and the error that exits the sub-VI are

[wired to the two unwired terminals to the right.

error out

Atimeout mo]

_static/file.png

_static/concurrency_vs_parallelism.png
Concurrency Parallelism

Tasks start, run and Tasks run
complete in simultaneously
an interleaved fashion

_static/labview_service_bd.png
few Project Qperate Tools Window Help

][] bl (e pepisionron -] [S-14] bl aRlE

FioErr B

[Service -]

rvice Name 0
poerere B0

atrbutes [e s

o Error <]
[trbtES 1

o5] | emorout
e = o] | poweef | 52
Network Manager IP Address or Hostname

b
et arsgerpot

Atimeout mo]
timeout ms

E—

_static/labview_client_bd.png
Ele Edit View Project Operate Tools Window Help

L] 0 (][9]] el [apiconon][5

o] [o]

Network Manager IP Address or Hostname

[,

Network Manager port

s | S
Fe = -

[Object -]

Numeric ~]| [Numeric ~] [Numeric ~]

Numeric +]

result
(]

L error out
=

_static/labview_client_fp.png
MyArray_clienti

Eile Edit View Project Operate Tools Window Help

[o[@] @ 1] [15pt Appicaton Fort -1 [=al?
Network Manager IP Address or Hostname. i) 5 e
Network Manager port
S
Senice name
Wyrsy
function name

erorout
lnspace r——
st stop n g o
Ju G Gw source

